Sensia

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Scanner Logic
Programmer Manual

Language Reference

Manual No. 50331442, Rev. 01

INTELLIGENT ACTION +

*Mark of Schlumberger.
Other company, product, and service names are the properties of their respective owners.
Copyright © 2017 Schlumberger Limited.

All Rights Reserved.
Manual No 50331442, Rev. 01
January 2018

Scanner Logic Programmer Table of Contents

Contents
Part [—INtrodUuctory INTOrMatioN ..o 19
1 Tl oo IV ot o] o SRR 19
2 Who Should Read This DOCUMENT?viiiiiiiie i 20
3 Organization of This DOCUMENT........ciiiiiiie e, 21
4 Conventions Used in ThiS GUITE......ccuuiiiiiiiii e 22
5 Parameter Value TYPE COUEBS ...covviiiiieicie e 23
6 S AlSO ettt 25
Part [l—Logic Script LaNgUAEE EI@MENTS ..oioviiieiie et 27
7 Tl oY IV ot To] o RURE RO RRRPTPR 27
8 COMMEBNTS 28
8.1 GENEral DESCIIPTION .vviiiceiie ettt 28
9 LItEral VAIUBS ..ot 29
9.1 GeNEral DESCIIPTION c..uiiiiie e e e 29
9.2 NUMEIIC LILEIAIS vt 29
9.3 BOOIEAN LItEIAl wuveiieviiiceiie e 29
9.4 SEFANG LILEIAN 1t 29
10 o ST AL =T URURP 31
10.1 GeNEral DESCIIPTION c..viiiiie e 31
11 IV AY Yo o LSRR 32
11.1 GENEral DESCIIPTION .vviiiiiie et 32
11.2 KEYWOIrd CAt@EOIIES ...uvveieeeie ettt e 32
12 DAL Ty PBS ittt e e e e e e 37
12.1 GENEral DESCIIPLION c.vviiieiie et 37
12.2 PrMITIVE Data TYPES oot 37
12.3 Type Conversion and TYPE CaSTINGcocvveieiiceee e 38
12.4 Run Time Numeric Bounds Handlingccooeiiiiiiiiii e 40
12.5 ODJECE DAtA TYPES .ttt 40
13 CONSTANTS .o 43
13.1 GENEral DESCIIPLION c.vviiieiie et 43
13.2 2 0 g = TSR 43
14 VATADIES s 44
14.1 GeNEral DESCIIPTION ..uii e 44
14.2 REIMATKS ©veeeee ettt ettt ettt 44
15 O] o<1 =) o] 4T U UOPUPPPRRTN 45

Table of Contents Scanner Logic Programmer

15.1 GENEral DESCIIPLION .vviiiceiie e ettt 45
15.2 OPEratOr CAtBEOIIES .uvvviiiie e 45
15.3 OPErator PreCEABNCEo, 50
15.4 ASSOCIATIVITY .ttt a e 51
15.5 AdAING ParentNESES . .vveeieeieeeee e 53
16 EXPIESSIONS ..ttt 54
16.1 GENEral DESCIIPLION .vviiiceiie e ettt 54
16.2 EXPIrESSION VAlIUBS....coiiiiiiiie e 54
16.3 Operator precedence and assOCIatiVITyooiiiiiiiiiii e, 55
16.4 Literals and SimMPle NAMESc..eiiii e 55
16.5 ASSIZNMENT EXPIESSIONS . .uttiiiiiiiee et e ettt et et e e e e e e e e e e e s et r e e e e e e s s eaaaaees 55
16.6 INVOCATION EXPIESSIONS ... e 56
16.7 REIMAIKS <ottt ettt ettt ettt 56
17 =) (=T 0 0= o PSR SPPPPR 57
17.1 GeNEral DESCIIPTION c..viiiiie e 57
17.2 TYPES OF SEATEMENTS e 58
17.3 ASSIENMENT STAtEMENTS .t 58
17.4 Increment and Decrement STatemMENTSiivviiiiii i 59
17.5 INVOCATION STATEMENTS . ittt e e 59
17.6 SeleCtioN SEATEMENTS ..iouiiiiiicei e 60
17.7 JUMP SEAtEMEBNTS .o 61
17.8 Embedded STatemENTs ... 63
17.9 Nested Statement BIOCKS......c.iiiiiiiiec e 64
17.10 Parameter Assignment Statements ... 64
18 PreproCESSOr DIFECLIVES woviiiiiiiie ettt sttt e et e e e s sntaeee e enens 65
18.1 Region and ENAregion DIr€CLIVESccuiiiuii i 65
18.2 Pragma QiFECTIVEoiiieii e 66
Part HH1—LogIC SCIIPT ODJECES cuvviiiiiiicie et 67
19 Program ODJECT ..ot 67
19.1 GeNEral DESCIIPTION ..viiiiie e 67
19.2 Program Information REZIONcuiiiiiiii e 68
19.3 Program Declarations REZIONc..ciiiuiiiiiii e 68
19.4 System Declarations REZIONcc.viiciii e 69
19.5 Program Code REEIONciiiieieee e, 69
19.6 SUDIOUTINES REZION ...vviiieiie ettt ettt eaae e 69
20 Program Information ODJECEccviiiiiiii e 71
20.1 GeNEral DESCIIPTION ..uii e 71

Scanner Logic Programmer Table of Contents

21

22

23

24

25

20.2
20.3

21.1
21.2
213

22.1
22.2
22.3
22.4
22.5
22.6
22.7

23.1
23.2
233
23.4
23.5
23.6

24.1
24.2
24.3
24.4
24.5
24.6
24.7

24.7.1
24.7.2

25.1
25.2
25.3
25.4
255

DEClariNg PrOZINTO . .iiiiiie e s 71
Declaration ParameTtersScui ittt 71
Logic Script Resource ODJECES ..o 73
GeNEral DESCIIPTION ..ui i e 73
RESOUICE ODJECE TYPES woiiviieceiee ettt et 74
USQEZE INOTES Louttiiiiiiiiiiiiitiiiie ittt ettt ettt e e et s e nennnnnes 74
Register Input ReSource ODJECE ..o 76
GeNEral DESCIIPTION ..viiiie e 76
Required S3100 Device Configurationcccooiieiiiiii i 76
Declaring RegisterlnputResource ObJECTSoivviiiiiiiiiie e 76
Declaration ParameTtersScuiiii ittt 78
P OIS e 78
IMEEENOMAS e 78
U S ittt et e e e e e e e e r e e e e e e e e e raaaaaaaaaaa 79
Digital Input RESOUICE ODJECE...ciiiiiiiiiec e 80
GENEral DESCIIPLION c.vviiieiie et 80
Required S3100 Device Configurationccviivveeiiiieceee e 80
Declaring DigitallnputResource ODJECEScuiiiiiieiii e 80
Declaration Parameters 81
P OIS e a e e 81
U S ittt e e e e e e et a e e e e e e e e aaaaaaeaaaa 82
Analog PID Controller Resource ODJECTc.covviivieiiiiiciie e 83
GeNEral DESCIIPTION ..uii e 83
Required S3100 Device Configurationcocccoiieiiiii i 83
Declaring AnalogPIDControllerResource ObjectS.......ccovviiiiiiiiiiiiiiceciee e 83
Declaration Parameters 85
P OIS e e 87
IMIEENOAS ettt ettt 88
U S ittt e 88
SIMPIE PID o 88
Constraint OVErTIAE PID ...ccoiiiiic e 90
Digital PID Controller Resource OBJectcooviiiviiiiiiicee e 93
GENEral DESCIIPTION .vviiiiiie et 93
Required S3100 Device Configurationccccooiiiiiiiiice e 93
Declaring DigitalPIDControllerResource Objects.......ccovieeiiiciiiiiiiccieeccecee 93
Declaration Parametersooui e 95
P OIS e 97

Table of Contents Scanner Logic Programmer

25.6
25.7

25.7.1
25.7.2
26

26.1
26.2
26.3
26.4
26.5
26.6
26.7

27

27.1
27.2
27.3
27.4
27.5
27.6
27.7

28

28.1
28.2
28.3
28.4
28.5
28.6
28.7

29

29.1
29.2

30

30.1
30.2
30.3
30.4
30.5

IMIETNOAS ettt 98
U S ittt a e e 98
SIMPIE PID ot 98
Constraint OVEITIAE PID ...ccoiiiiii i 100
Digital OutpuUt RESOUICE ODJECE...uviiiieiiiiiii e, 103
General DESCIIPTION c..viii e 103
Required S3100 Device Configurationccceooiiiiiii i, 103
Declaring DigitalOutputResource ObJeCtScooviiiiiiiiceece e, 103
Declaration Parameters 104
P OPEITIES e e 105
IMIEENOAS et 106
U S ittt 107
Alarm Resource ODJECT ...c.viiiii e, 108
General DESCIIPTION c..uiiiie e 108
Required S3100 Device CoNfIgUIrationcoouveiciiiiiii e, 108
Declaring AlarmResource OBJECES......viiivii i, 108
Declaration Parameterscuiiii ettt 109
P OPEITIES e 110
IMEEENOAS e 110
U S ittt et e e e e e — e e e e e e e s aaaaeaaaaa 111
TIMeEr RESOUICE ODJECT woiiiiiiiiceiie e 112
GENEral DESCIIPTION couvvi it 112
Required S3100 Device CoNfigUrationcccveicuiiiiiii e, 112
Declaring TimerResource ODJECTS ...cc..iiiiiiiii e, 112
Declaration Parameters, 113
P OIS et a e 113
IMIEENOAS et 114
ULz g TSRS 114
Logic Script ReGISTEr ODJECES ..vviiviviiieiee i, 116
General DESCIIPLION c..uiii e 116
REGIStEr ODJECT TYPES vttt e 117
Configuration Register ODJECTccviiiiii e 119
GENEral DESCIIPLION cuvviiceiie e 119
Declaring ConfigurationRegister ObjeCtS.....c.coiiiiiiiiiiiecce e, 119
Declaration Parameters 121
P O P EITIES e e e 121
IMIEENOAS et 122

Vi

Scanner Logic Programmer Table of Contents

31

31.1
31.2
313
314
315
31.6

32

321
32.2
32.3
32.4
32.5
32.6

33

33.1
33.2
333
334
335
33.6

34

34.1
34.2
34.3
34.4
34.5
34.6

35

35.1
35.2
35.3
354
355

36
36.1

U S ettt 122
Maintenance Register ODJECTo i, 124
General DESCIIPLION c..uiii e 124
Declaring MaintenanceRegister ObJeCtS.....ccoiiiiiiiiiiicec e, 124
Declaration ParametersScouiiii e 126
P OPEITIES e 126
IMIEENOAS e 127
U S ittt e e e e e et e e e e e e s e aaaaaaaaan 127
Holding Register ODJECTiiiiiiiciee e, 129
GeNEral DESCIIPTION touviiiceiee e 129
Declaring HoldingRegister ODJECES.......covviiiiiieiiiec e, 130
Declaration ParametersSco.iiui ittt 131
P O P EITIES o e e 131
IMEEENOMAS e e 132
U S ittt e e e e e e e e e e e e e e e aaaaaaaeaan 132
Accumulation Register OBJECT . ..cvii i, 134
GENEral DESCIIPTION cvviiiceiie e 134
Declaring AccumulationRegister ODJECES....c.oiiiiiiiiii e, 135
Declaration Parameters 136
P OIS et a e 137
IMEEENOMAS e 137
U S .ttt 138
WOrking REgISter ODJECTciviiiiiie et 140
General DESCIIPLION c..uiii e 140
Declaring Working registersooui i, 140
Declaration Parameterso 141
P OPEITIES e 141
IMIEENOAS et 141
ULz g TSP PPPPPRPPP 141
TASK OBDJECT i, 144
General DESCIIPTION c..ui i 144
DECIAMTNG TASKS .vveietvie ettt et 144
P OPEITIES e 145
IMIEENOAS et 145
ULz g TSP PPPPPRPPP 145
SEALE OBJECE i 147
GeNEral deSCIPLION . .c.uii it 147

Vi

Table of Contents Scanner Logic Programmer

36.2
36.3
36.4
36.5
36.6

37
38

38.1
38.2
38.3
38.4

39

39.1
39.2
39.3
39.4

40

40.1
40.2
40.3

41

41.1
41.2

42

42.1
42.2
42.3

43

43.1
43.2
43.3
43.4
43.5

44

44.1
44.2

BITo T Y= = =TSR 147
P OPEITIES e 147
IMEEENOMAS e 148
IMLOTITIEIS .o 148
U S ittt e e e e e — e e e e e e e e et —aaaaaaaaan 148
SYSEEM StATE ODJECES wuviiviiiiiii e s 150
ADOIT STATE ODJECT woiiiviiicei e 151
General deSCriPtioNci e 151
Declaring abortState ... i, 151
ENtering abOrtState .. o, 151
U S ittt e e e e e — e e e e e e e e et —aaaaaaaaan 152
Fail STAte OBDJECT ..o 154
General DESCIIPTION c..uiiiie e e 154
DeClaring failState ..., 154
ENtering failState . v e, 154
U S ittt e e e e e e — e e e e e e e s et aaaaaeaaaaa 155
SUDITOULINES .ottt ettt 157
General DESCIIPLION c..uiii e 157
DeClaring SUBIOULINESouiii e, 157
U S ittt e e e e e et e e e e e e s e aaaaaaaaan 157
YA (=10 (N O] o Tt £ RR 159
GeNEral DESCIIPTION couvvi it 159
SYSEEM ODJECE TYPES ot 159
Real Time System ODjJECT c...iiiiii e, 160
GENEral DESCIIPTION c..viiiiiciii ettt 160
o] o< A= U SUPSRSPPPR 160
U S ittt 160
Flow Run System OBJeCT ..., 162
General DESCIIPLION c..uiiiie e 162
Required S3100 Device CoNfigUrationcoveiciiiiiie e, 162
P OPEITIES e 162
IMIEENOAS ettt 163
U S ittt e e e e e e e e e e e e e aaaaeaaaaa 163
Flow Archive System OBJECTooiiiiiicc e, 165
GEeNEral DESCIIPTION c..viiiiiiiice ettt 165
Required S3100 Device CoNfIgUIrationccuveicviiiiii e, 165

viii

Scanner Logic Programmer Table of Contents

44.3 IMIEENOAS e 165
44 .4 U S ittt 166
45 Triggered Archive System ObJeCT ..o, 167
451 General DESCIIPTION c..viii e 167
45.2 Required S3100 Device CoNfigUrationcccveiviiiiie e, 167
45.3 P OPEITIES e 167
45.4 IMIEENOAS e 168
45,5 U S ittt e e e e e et e e e e e e s e aaaaaaaaan 168
46 User Event Record System ODjJeCt......cooiiiiiiic e 170
46.1 GeNEral DESCIIPTION touviiiceiee e 170
46.2 P OPEITIES e 170
46.3 IMIEENOAS ettt 170
46.4 U S ittt e e e e e et e e e e e e s e aaaaaaaaan 170
47 Printed Ticket System ObJeCt ..., 172
471 GeNEral DESCIIPTION couvviiceeie e 172
47.2 IMIEENOAS et 172
48 Display SYStEM ODJECT.. ..o 173
48.1 General DESCIIPTION c..uiii e 173
48.2 Required S3100 Device Configurationcccoooiiiiiii i, 173
48.3 P OPEITIES e 173
48.4 IMIEENOAS et 174
48.5 U S ittt 174
49 MAEN ODJECT. . i 176
49.1 General DESCIIPTION c..uiii e 176
49.2 Mt CONSTANTS ...oiiiiiiiiiiec ettt 176
49.3 Math Library FUNCHIONS . .ccvviiii e 176
49.3.1 Math Trigonometric FUNCLIONS.......uviiiiieceeieeee e, 178

50 User HMI FIeld OBJECE.....iiiiii e 179
50.1 General DESCIIPLION c..uii i 179
50.2 Declaring HMiFields ObjJECESiiiiiiiie e, 180
50.3 Declaration Parameters, 181
50.4 P OPEITIES e 181
50.5 U S ittt e 181
Part IV APPENIX Ao 183
51 Scanner 3100 UNit CategOrieSuuuviiiiiie i 183
51.1 GeNEral DESCIIPLION couvvi it 183

Table of Contents Scanner Logic Programmer

51.2
51.3

5131
51.3.2
51.3.3
51.3.4
51.3.5
51.3.6
51.3.7
51.3.8
51.3.9
51.3.10
51.3.11
51.3.12
51.3.13
51.3.14
51.3.15
51.3.16
51.3.17
51.3.18
51.3.19
51.3.20
51.3.21
51.3.22
51.3.23
51.3.24
51.3.25
51.3.26
51.3.27
51.4

Measurement Cat@BONIESioui ittt 183
6 oV Y oT=T U UPPUPURURR 185
N O ettt 185
VOIUME Lttt ettt ettt 185
Static Pressure (ADSOIUTE) c.uuieie e 186
SEALIC PreSSUIE (GAUEE) .vviieieiiie ettt 186
TF O ENTIal PrESSUIE . ettt 187
BT aa] o1 = L L= PP 187
VLSS et 188
BB Y oo 188
LV o] 1 =Y = I SUR 189
IMIOIAE IMISS ettt ettt e etttk e e en 189
0] 7= o RSO 189
L E=To U] aTor PP UPUPPPPPPPPPNE 189
RESISTANCE ettt 190
CUTTENT ettt e ettt e e e s 190
I 1 et e et e e e e 190
POICENT e 190
P UL S ettt ettt 191
LV AT el 1] 1 A 2P PPUPPPPPPPPPPPPPRt 191
Ao = PSR UPSRPRRSPI 191
REIAEIVE DENSITY 1ottt e e e 191
FRACTION ..t 192
SYSTEIM TICKS ettt e 192
REAI DT .ttt ettt e 192
REAI TIMIE ettt 192
6 1 PP RRP 192
PO T e 193
G i 193
RATE SCAIAN . 193

Scanner Logic Programmer Table of Tables

TABLES

Table 3.4-1. SYNTAX CONVENTIONS.....ci ittt et ettt etae e et e ete e eaae e 22
Table 3.4-1. ValUe tYPE COUES ..ottt et e 23
Table 3.4-1. Other AOCUMEBNTS ...cuiiiiee et ettt e e e 25
Table 11.2-1. Program StruCture KEYWOITS......cc.iiiiiii i e 32
Table 11.2-2. Program FIow Control KEYWOIAScvviiiiiiieii e 33
Table 11.2-3. Data TYPE KEYWOITSuviiiiieiceie ettt ettt e 33
Table 11.2-4. Literal Value KEYWOITSccvvi it 33
Table 11.2-5. Program Information Declaration KEYWOrdsSccvvviiiiiiiieiiiiecie e 34
Table 11.2-6. Resource and Registers Declaration Keywordsccccceooviiiiiiiiiiiicceccce e 34
Table 11.2-7. Resource and Registers Parameter KeyWordscc.oooiiiiiiiiiiii i 35
Table 11.2-8. Preprocessor Directive KeYWOrdS.........oooiiiiuiiiie e 36
Table 12.2-1. Primitive Data Types used in Scanner Logic SCriptooviiiiiiiiieecieeeee e 37
Table 12.3-1. SUPPOIrted TYPE CONVEISIONSeeivieeierieeeteee ettt eee ettt ettt et e e eve e eraee s 39
Table 12.5-1. Object Types used in Scanner LOZIC SCriPt...c..iiiviiiiieiciii e 40
Table 13.1-1. Math CONSTANTS ..ciuviiiiiciii ettt 43
Table 15.2-1. Primary OPEratorsS ...ttt ettt e e eae e 45
Table 15.2-2. UNAry OPEratorsS ..o ettt ettt ete e et e e e 46
Table 15.2-3. Arithmetic OPErators ... i e 47
Table 15.2-4. Relational OPerators ... e 47
Table 15.2-5. EQUAlITY OPEIatOrS. .uei ittt ettt 48
Table 15.2-6. Conditional AND OPEIator....ccuii ittt 49
Table 15.2-7. Conditional OR OPEIAtOriivviiiiiei e 49
Table 15.2-8. Assignment and Compound Assignment OPeratorsc..oocvveeeveeieeeeeviee e 49
Table 15.3-1. Operator precedence from highest to [oWeSt ..o 50
Table 15.4-1. Order of evaluation of operators and operands..........cccccooviieiiiiiiiiicceecce e 52
Table 15.5-1. Order of evaluation of operators and operands..........ccccooviieiiiiiiiiiececcce e 53
Table 17.2-1. Types Of StatEMENTS ...c.vii e 58
Table 17.7-1. List of program control KEYWOIASoovviiiieiiicie e 61
Table 20.3-1. Program Information object declaration parameters.......ccccccovvveveiiivieeicie e 71
Table 21.2-1. TYPes Of re€SOUICE ODJECES .vviiiviiiiiii et 74
Table 22.2-1. RegisterInputResource object required S3100 device configuration 76
Table 22.4-1. RegisterInputResource object declaration parameters.......cccoevvveviiivencnne. 78
Table 22.5-1. RegisterInputResource object properties......ccccieiiivieiieiieieeieceee e 78
Table 22.6-1. RegisterInputResource object methodscccooiiiiiiiiiiiiiiciicce e 78
Table 23.2-1. DigitalInputResource object required S3100 device configuration................ 80
Table 23.4-1. DigitalInputResource object declaration parameters......cccocovviiievvivennnnne. 81
Table 23.5-1. DigitalInputResource object properties.......cciiiiiiiiiiieiiieieiiee e 81
Table 24.2-1. AnalogPIDControllerResource object required S3100 device configuration83
Table 24.4-1. AnalogPIDControllerResource object declaration parameters.................... 85

Xi

Table of Tables Scanner Logic Programmer

Table 24.5-1. AnalogPIDControllerResource object properties.......cccoververeiiienenvennenne 87
Table 24.6-1. AnalogPIDControllerResource object methodscccoccoviiiiiiiiiieiiiiennnne. 88
Table 25.2-1. DigitalPIDControllerResource object required S3100 device configuration............. 93
Table 25.4-1. DigitalPIDControllerResource object declaration parameters.................. 95
Table 25.5-1. DigitalPIDControllerResource object propertiesccocoviivieviivennenne. 97
Table 25.6-1. DigitalPIDControllerResource object methods........ccccoiiiiiiiiiiiiiiiencann. 98
Table 26.2-1. DigitalOutputResource object required S3100 device configuration...........cc......... 103
Table 26.4-1. DigitalOutputResource object declaration parameters........ccccocvevvervaiennenn. 104
Table 26.5-1. DigitalOutputResource object properties........cccieriiiieniiienieiene e 105
Table 26.6-1. DigitalOutputResource object methods.......cccooeiiiiiiiiiiiiiiiiee e, 106
Table 27.4-1. AlarmResource object declaration parameterscccocoveevveeieeceeciie e 109
Table 27.5-1. ALlarmResource ObjeCt PrOPertiES. ..o e it 110
Table 27.6-1. AlarmResource object Methodscocveiiiiiiiece e 110
Table 28.4-1. TimerResource object declaration parameterscccocoveevvceieecieeciic e 113
Table 28.5-1. TimerResoUrce object PrOPeItieS....ccoiiiieiiiiee et 113
Table 28.6-1. TimerResource object Methodscc.ovviiiiiii i 114
Table 29.2-1. Types Of reGiSter ODJECTS ..uviiiiiiice e 117
Table 30.3-1. ConfigurationRegister object declaration parameters.......c.cccoceevveviiiniennen. 121
Table 30.4-1. ConfigurationRegister object properties........cccooiviiiiiiiiiiiiieiiiieieeiee, 121
Table 30.5-1. ConfigurationRegister object methods........ccocoiiiiiiiiiiiiiiiiiiiciece e, 122
Table 31.3-1. MaintenanceRegister object declaration parameterscccoceevevveveciennen, 126
Table 31.4-1. MaintenanceRegister object propertiesccocvveriiieniiiiene e, 126
Table 31.5-1. MaintenanceRegister object methods.........ccooiiiiiiiiiiiiiii 127
Table 32.3-1. HoldingRegister object declaration parameterscccocooveviiieniiiiene e, 131
Table 32.4-1. HoldingRegister object propertiesccoiieeiiieri e 131
Table 32.5-1. HoldingRegister object Methods........cccocoiiiiiiiiiieiicieccee e, 132
Table 33.1-1. AccumulationRegister object published valuesc.ccccooveviiiiiiiiiiiiiene, 135
Table 33.3-1. AccumulationRegister object declaration parameters.........cccoecvevvevieinennen, 136
Table 33.4-1. AccumulationRegister object properties.........ccocoovioviiviiieiiiieieeiece e, 137
Table 33.5-1. AccumulationRegister object methodscccocvveiiiiiiiiiiiee e, 137
Table 34.3-1. WorkingRegister object declaration parameterscccocooveviiiieiiiiieneciennn, 141
Table 34.4-1. WorkingRegister object properties ..o 141
Table 34.5-1. WorkingRegister object Methods........cccccoiiiiiiiiiciiiieccec e, 141
Table 35.3-1. TASK ODjJECT PrOPEITIES ...cviieeeiceie e 145
Table 35.4-1. Task object MEthOdSocoiiiie e 145
Table 36.3-1. State 0bject ProPerties ..o 147
Table 36.4-1. State 0bject MEthOdS.......oooviicc e 148
Table 36.5-1. State 0bject MOIfIers. ..o 148
Table 38.3-1. Triggering the Abort State in aS3100 device ...c.cocvvivviiiciiiciccece e 152
Table 39.3-1. Resource Validation EFTOIS ..ottt 155
Table 41.2-1. Types oOf SYSTEM ODJECES ..ccuviiiiiic e 159

Xii

Scanner Log

ic Programmer Table of Tables

Table 42.2-1. System_RealTime object properties.......ccooiiioriiiiee e 160
Table 43.2-1. System_FlowRun object required S3100 device configuration............ccccceevenen. 162
Table 43.3-1. System_F1owRUN 0bject Properties........cccveiiiiieriiiieieceeeeee e 162
Table 43.4-1. System_F1owRun object Methodscccceviiiiiiiiiiiecc e 163
Table 44.2-1. System_FlowArchive object required S3100 device configuration................. 165
Table 44.3-1. System_FlowArchive object methodscccccveviiiiiiiiiiiccccce e, 165
Table 45.2-1. System_Display object required S3100 device configurationccccceevenen. 167
Table 45.3-1. System_TriggeredArchive object propertiescccccovveveriiieneiiiene e, 167
Table 45.4-1. System_TriggeredArchive object methods.........ccocviviiviiiiiiiiiiccee, 168
Table 46.2-1. System_UserEventRecord object properties........ccoovvvereiieniiieneiiene e, 170
Table 46.3-1. System_UserEventRecord object methodsccccooiviiviiiiiiiiccicece e, 170
Table 47.2-1. System_PrintedTicket object methods.......cccooiiiiiiiiiiiiiiiiiee e, 172
Table 48.2-1. System _Display object required S3100 device configuration..........c..ccccuvne.n. 173
Table 48.3-1. System_Display object properti€s........ccoveviiieieiierieciececeee e 173
Table 48.4-1. System_Display object Methodscccooviiiiiiiiiiiece e 174
Table 49.2-1. System_Math Object CONStANTSc.coiiiiiiiiee e 176
Table 49.3-1. System_Math Object Library FUNCLIONSooiiiiiiiiiiee e 177
Table 49.3-2. System_Math Object Trigonometric FUNCLIONS......c.covvevviiiiiiiiieiccicccee e, 178
Table 50.3-1. HmiFields object declaration parameterscccoovvioveeceiiiec e 181
Table 50.4-1. HmiFields object properties ... 181
Table 51.2-1. MeasuremMent CatEEOMES c.uui ittt et 183
Table 51.3-1. Units for Unit Type None (INdeX 0)...c..eeiviiiiiiiciee e 185
Table 51.3-2. Units for Unit Type Volume (INAeX 1)coveiiiiiiiee e 185
Table 51.3-3. Units for Unit Type Static Pressure (INdeX 2)ccvevvveiiiiiiciieieeeceeeeee e 186
Table 51.3-4. Units for Unit Type Static Pressure (Gauge) (INdeX 3)..cc.coovvvvvvieiiiiiiiieecieeeee e 186
Table 51.3-5. Units for Unit Type Differential Pressure (INdeX 4)cocooeeeivioiiiiiiecieeeeeee 187
Table 51.3-6. Units for Unit Type Temperature (INdeX 5).....cc.cooiiiiiiiiiieeeeeeeeee e 187
Table 51.3-7. Units for Unit Type Mass (INAEX 6)cueiiiiiiieieeee e 188
Table 51.3-8. Units for Unit Type Energy (INAeX 7)covrieeieeee e 188
Table 51.3-9. Units for Unit Type Voltage (INdeX 8)ccvviiriiiiieiieieecee e 189
Table 51.3-10. Units for Unit Type Molar Mass (INdeX 9)oovvviiiiiiiiiiceie e 189
Table 51.3-11. Units for Unit Type Length (INdeX 10)coviiiiiiiiiiicie e 189

Table 51.3-12.
Table 51.3-13.

Units for Unit Type Frequency (INAeX 11)coioiiiiiiie e 189
Units for Unit Type Resistance (INdeX 12).....cc.cooiiiiioiiiieeceeeeeeeeeeeeeee e 190

Table 51.3-14. Units for Unit Type Current (INdeX 13)....cociiiiiiiiieecee e 190
Table 51.3-15. Units for Unit Type Time (INdeX 14)cooiiiiiiee e 190
Table 51.3-16. Units for Unit Type Percent (INdeX 15) ..oiivviiiiiiiiiiecee e 190
Table 51.3-17. Units for Unit Type Pulse (INAeX 16).....cc.ccoviiiiiiiiiiicee e 191
Table 51.3-18. Units for Unit Type Viscosity (INAeX 17)ccoviiviiiiiiiiiieecee e 191
Table 51.3-19. Units for Unit Type Mole (INAeX L18)....ccvviiiriiiiieeicieeeeee e 191

Table 51.3-20.

Units for Unit Type Relative Density (INndexX 19).....cccooiiiieiiiiiiieeeeeeeeeee e 191

Table of Tables Scanner Logic Programmer

Table 51.3-21.
Table 51.3-22.
Table 51.3-23.

Units for Unit Type Fraction (INdeX 20).....c..cooviiiiiieiic e 192
Units for Unit Type System Ticks (INAeX 21) ..vviiviiiiiiiiceeeceee e 192
Units for Unit Type Real Date (INdeX 22)ooiiiieieieeeeeeeeeeeeeeeee e 192

Table 51.3-24. Units for Unit Type Real Time (INdeX 23)oooiioiiieeecee e 192
Table 51.3-25. Units for Unit Type Unity (INAeX 24)oviiiieiiieeeeeeee e 192
Table 51.3-26. Units for Unit Type Power (INAeX 25)coiiiiiiie e 193
Table 51.3-27. Units for Unit Type Charge (INAeX 26).......ccviivveiiiieieieeeeeeeee e 193
Table 51.4-1. UNits for RAte SCalar......cciooi it 193

Xiv

Scanner Logic Programmer Table of Examples

EXAMPLES

Example 8.1-1. BlOCK COMMEBNT......iiiiii e 28
Example 8.1-2. Single [INE COMMEBNTS ...cvviiiiii e 28
Example 8.1-3. NeSted COMMEBNTSviiieiii ettt et e e eve e eaaee s 28
Example 9.2-1. NUMETIC TIEEIAIS ...viiiie e 29
Example 9.4-1. SEriNG [EEral ... 29
Example 9.4-2. Invalid String lIteral.......ccoi i 30
Example 10.1-1. Valid identifier CharaCters ... 31
Example 10.1-2. Valid identifiers.....oovii i 31
Example 10.1-3. NOt Valid identifiers ...t 31
Example 11.1-1. Characters Used in KEYWOIrSccoviiiuiiiiiie e 32
Example 12.3-1. Implicit type conversion eXamplesccoeiiiiiiiiiice e 38
Example 12.3-2. Explicit type conversion (type casting) examples..........cccccovvevieciicovieeceeeiceee 39
Example 15.2-1. Unary Operator @XamiPlet 45
Example 15.2-2. Binary Operators EXamiPleottt e 45
Example 15.3-1. Operator precedence — multiplication has higher precedence than addition50
Example 15.4-1. Assignment operator is rght-assoCiatiVe......c..cocviiivii i 52
Example 16.1-1. EXamples Of @XPreSSiONScivrii ittt et 54
Example 16.4-1. Literal eXpression @XamPIeS.ot 55
Example 16.5-1. Assignment expression eXampPlesS.o 56
Example 16.6-1. Invocation expression eXamMpPIEScc.ii it 56
Example 17.1-1. Some examples of StatemMENTS ...cc.oo i 57
Example 17.3-1. Example assignment statement — resource object property.......ccccccoevveeeiieennnnn. 59
Example 17.3-2. Example assignment statement — register object propertycccccceeevvvvviivevnnnnn 59
Example 17.3-3. Example assignment statement — system object property.........ccceveeeveeviveevnnnnn 59
Example 17.4-1. Example increment/decrement statements......cc.covvviveeceiiiiieee e 59
Example 17.5-1. Example invocation statements — subroutine calls..........ccccooiiiiiiiiiii 60
Example 17.5-2. Example invocation statements — object method calls...........cocoovviiiiiiiiiiiinn, 60
Example 17.6-1. Selection StatemeENTtS.o 61
Example 17.7-1. Example Jump StatEMENTS ...oooiiiiii e 62
Example 17.8-1. Embedded statements — single-line and statement block...........ccoeevviiiiiiiiinnn 63
Example 17.9-1. Nested statement BIOCKSocviiiiii e 64
Example 17.10-1. Example parameter assignment statementsS........cccveevvveeeie i 64
Example 18.1-1. EXample region dir@CHIVESccvii it 65
Example 19.1-1. Overall structure of the program objectcccooiiiiiiiiiii 67
Example 20.2-1. A proginfo declaration with parameter assignment statements 71
Example 21.1-1. A registerinputs resource declaration group with two
RegisterINPUtRESOUINCE ODJECES ..ottt 73
Example 21.3-1. Default Properties of ReSoUrce ODjJECTS......covvviiiviiiiiiiiciiece e 75

XV

Table of Examples Scanner Logic Programmer

Example 22.3-1. RegisterInputResource object declaration example.......cccocvviiiiiiiinnnnn, 77
Example 22.7-1 RegisterInputResource Object USAgE......cciiiiiieiiiiieii e 79
Example 23.3-1. DigitalInputResource object declaration example........cccoovvviiiiiiieiennnn 81
Example 23.6-1. DigitalInputResource object USAZEcccviiiiiiieiiiieiie et 82
Example 24.3-1. AnalogPIDControllerResource object declaration example.................... 84
Example 24.7-1. AnalogPIDControllerResource object usage as asimple PID 89
Example 24.7-2. AnalogPIDControllerResource object usage as a PID with a constraint
OVEITIAE CONTIOIIBT 1.ttt ete e 90
Example 25.3-1. DigitalPIDControllerResource object declaration as a simple PID....... 94
Example 25.3-2. DigitalPIDControllerResource object declaration as a PID with a
constraint override CONTIOIBT i e 94
Example 25.7-1. DigitalPIDControllerResource object usage as asimple PID................ 98
Example 25.7-2. DigitalPIDControllerResource object usage as a PID with a constraint
OVEITIAE CONTIOIIET 1 ettt 100
Example 26.3-1. DigitalOutputResource object declaration example......cccccoovvvvviriiinnenn. 104
Example 26.7-1. DigitalOutputResource object usage example.......ccocoviiviiiiiiiiiiiiennnnn, 107
Example 27.3-1. AlarmResource object declaration examplecccccoevvvviiiiiiiccieccice, 109
Example 27.7-1. AlarmResource object usage exampleccooviiiiiiiiciciiceee e, 111
Example 28.3-1. TimerResource object declaration examplec.coooeeeviiiiiiiiiiciciccee, 112
Example 28.7-1. TimerResource object usage examplecccooviiiiiiiecicicee e, 114
Example 29.1-1. Using Logic Script Register ObJECtS.......ooviiiiiiiciieee e 116
Example 30.2-1. ConfigurationRegister object declaration example.......ccccovvvviiiiiinnenn. 120
Example 30.6-1. ConfigurationRegister object usage example......ccocviiviiiiiiiniiiiiennnnn, 122
Example 31.2-1. MaintenanceRegister object declaration examplecccccovvvvviiiiiiiennnn. 125
Example 31.6-1. MaintenanceRegister object usage example......ccccoviiviiriiiiieniniienieieen, 127
Example 32.2-1. HoldingRegister object declaration example........ccocovviviiiiiiiiiicciene, 130
Example 32.6-1. HoldingRegister object usage example......cccoioiiiiiiiiiiiiiiecccece e, 132
Example 33.2-1. AccumulationRegister object declaration exampleccoeviiiiiiienienen, 136
Example 33.6-1. AccumulationRegister object usage examplecccocovviviiiiiiiiiiciiciennn, 138
Example 34.2-1. WorkingRegister object declaration example........ccocvvviiviiiiiniiiienieiennn, 140
Example 34.6-1. WorkingRegister object usage example......cccooiiiiieiiiiiiniiiecee e 142
Example 35.2-1. Task object declaration eXample........ccceeivieiiiiiicieceee e 144
Example 35.5-1. Task object Usage example ..o, 145
Example 36.2-1. State object declaration example ..o 147
Example 36.6-1. State object usage example.. ..o 149
Example 36.6-1. System Declarations reZiONoovi oo 150
Example 38.2-1. Abort State object declaration example........ccccvvviiiiiiiiiiiiccce e 151
Example 38.4-1. Abort State object usage example......cciiiiiiiiiiiiiiici e 152
Example 39.2-1. Fail State object declaration exampleccccooviviiiiiiiiiiciee e 154
Example 39.4-1. Fail State object usage examplecccooviiiiiiiiiie e 155
Example 40.2-1. Subroutine declaration eXample ..., 157

XVi

Scanner Logic Programmer Table of Examples

Example 40.3-1.
Example 42.3-1.
Example 43.5-1.
Example 44.4-1.
Example 45.5-1.
Example 46.4-1.
Example 48.5-1.
Example 50.2-1.

SUDPrOoUTINe USAge eXamPIe. ... 158
System_RealTime object usage example......ccciiiieiiiiinciece e, 160
System_FlowRun object usage exampleccccccoveviiiieiiiiiecccieee e, 163
System_FlowArchive object usage example........ccocoviiiiiiiiiiiiiiciiciene, 166
System_TriggeredArchive object usage examplecccccovveviiieiiciennan, 168
System_UserEventRecord object usage example.........ccocvevveviiieieciennan, 170
System_Display object Usage exampleccooviieriiiieniiieiceee e 174
HmiFields object declaration eXampleccovviieiiiiiiiiiieccie e 180

XVii

Table of Examples Scanner Logic Programmer

This page is left blank intentionally.

XVili

Scanner Logic Programmer Part |

Part |—Introductory Information

1 Introduction

Scanner* Logic Script is a programmable logic controller (PLC) language created by
Cameron Valves & Measurement for use with the Scanner 3100 flow computer. It
allows users to produce programmable output values and control signals based on
the desired control algorithm. The Scanner 3100 can be configured to subscribe to
these output values and control signals to produce hardware output effects. You can
create programs—sets of written instructions within a state machine model—to
automate control tasks using all available hardware and software parameters of the
device.

Scanner Logic Script was designed to be simple to understand and use, yet powerful
enough to implement a wide variety of complex control applications. Another design
goal was for the Scanner Logic Script execution engine to be conservative in its use of
Scanner 3100 processor time and system memory. Programming language features
are deliberately limited in the Scanner Logic Script language to achieve the goals of
simplicity and reduced system resource usage.

Note: Cameron also provides a complimentary Scanner Logic Integrated Development
Environment (IDE) application. Scanner Logic Script allows users to create, edit and
compile logic programs, upload binaries to Scanner 3100 targets and perform live
debugging operations in a graphical environment. For more information, see Scanner
Logic IDE Documentation.

19

Part | Scanner Logic Programmer

2 Who Should Read This Document?

You should use this document if you write or modify Scanner Logic Script programs,
or if you configure Scanner 3100 devices and need to know how logic programs
should work within the device.

This document is intended to be a reference manual for programmers who have
some prior experience in writing programs or in coding for logic controllers. Scanner
Logic Script Language Reference Manual assumes that you are familiar with concepts
of programmable logic controllers, and that you are familiar with structured high-
level procedural languages (e.g. C/C++/C# type languages) and programming with
objects. It is assumed that you know common programming terminology. You should
also have some familiarity with the Scanner 3100 product and with its web interface.

This document is not organized to be an instructional guide or primer in writing
programs in general nor does it step the reader through constructing, running,
debugging, and using Scanner Logic programs.

In general, basic concepts of programming are not explained in this manual.
However, concepts that are new or that operate differently in Logic Script than in
other languages are explained.

20

Scanner Logic Programmer Part |

3 Organization of This Document

This guide describes the elements of the Scanner Logic Script language in a series of
chapters grouped into parts.

Part | — Introductory Information

The chapters in Part |—Introductory Information describe the contents of this
document and its organization, plus information about conventions for text font
usage in this document and codes for allowable value types.

Part Il —Logic Script Language Elements

The chapters in Part Il—Logic Script Language Elements introduce the basic
components of the Scanner Logic Script language. These are the elements that
compose the instructions and logic of a program.

Part Il — Logic Script Objects

The chapters in Part Ill—Logic Script Objects provide reference information for each
of the object types available for us in the Scanner Logic Script Language. Program,
Task, and State objects provide the structure and overall flow of the program.
Resource and register objects provide means of exchanging input and output with the
Scanner 3100 host device. Other objects provide additional information or
functionality. The majority of writing a program in Scanner Logic Script is made up of
interacting with these objects.

Part IV — Appendix A

Part IV—Appendix A describes the measurement unit categories available in the
Scanner 3100. These category and unit selections are used in declaring parameters of
various resources and registers.

21

Part | Scanner Logic Programmer

4 Conventions Used in This Guide

Glossary terms are shown in boldface where they are defined.
The following conventions are used in syntax description.

Table 8.1-1. Syntax conventions

Item Description
Language Plain computer font indicates an element that you type exactly as
element shown. If there are special symbols (for example, + or &), you also type

them exactly as shown.

placeholder Italic text indicates a placeholder that you replace with an appropriate
value.
[optional] Brackets indicate that the enclosed language element or elements are
optional.
(a group) Parentheses group elements together.

However, the parentheses shown in Function Syntax (Positional
Parameters) are part of the syntax.

alb | c Vertical bars separate elements in a group from which you must
choose a single element. The elements are often grouped within
parentheses or brackets.

22

Scanner Logic Programmer

Part |

5 Parameter Value Type Codes

Throughout this manual, there will be examples showing the syntax for declaring
various types of objects. These declarations may have parameters that need to be

declared and initialized with desired values. The allowable values for these
parameters are either given as a data type or are represented with value type codes
in the reference tables.

The following parameter value type codes are used in this document.

Table 8.1-1. Value type codes

Type Code Description
<str32> A string that is maximum 32 characters long.
Example: “A string”
<strg8e> A string that is maximum 80 characters long.
Example: “A string”
<str256> A string that is maximum 256 characters long.
Example: “A string”
<strle24> A string that is maximum 1024 characters long.
Example: “A string”
<date> A date encoded in the format DD/MM/YYYY as a string.
Example: “05/04/2017”
<option> One of a set of string values that will be specified in the reference
information.
Example: "nousers" | "adminusers" | "configusers" |
"maintusers"|"allusers"
<tagname> Register Tag Name
A descriptive name for the Scanner 3100 register selected from a list of
available registers as a string.
Example: "Analog 1: Holding: Inst Reading"
<tagcode> Register Tag Code
A structured identifier for the selected Scanner 3100 register as a string.
Example: "m32_FC_IN 5 Holding InstReading"
<category> Measurement Category

A Scanner 3100 measurement category as a string. See Chapter 51 for more

information.
Example: "Static Pressure (gauge)"

23

Part |

Scanner Logic Programmer

Type Code

<unit>

Description

Measurement Unit

A Scanner 3100 measurement unit corresponding to the selected
measurement category as a string. See Chapter 51 for more information.
Example: "Pa(g)"

<rate>

<reginput>

Rate Scalar Unit

A rate scalar unit that is selected from a list of units as a string, if the value is
a rate.

Example: "/sec"

Register Input

The name of one of the registerinputs resource objects that have been
declared in the program.

Example: AnalogInputl

<propname>

Property Name

The name of a property specifying both the object name of the user
declared object or system object and the property name of the object.
Example: AnalogInputl.Value

24

Scanner Logic Programmer

Part |

6 See Also

This document is intended to be solely a language reference manual for Scanner Logic

Script.

Additional information to support working with Scanner Logic Script can be obtained

in these other documents:

Table 8.1-1. Other documents

Type Code

Description

Scanner Logic IDE User Manual

Information on how to use the Scanner Logic Script
Integrated Development Environment (IDE) software for
code creation, compilation, uploading and real-time
debugging.

Scanner 3100 Web Interface User Manual

Information on configuring the Scanner 3100 Flow
Computer using its web interface, including how to view
information about an installed Scanner Logic program.

Scanner 3100 EFM Hardware User Manual

Detailed information on connecting and configuring the
Scanner 3100 Flow Computer inputs and outputs.

25

Part |

Scanner Logic Programmer

This page is left blank intentionally.

26

Scanner Logic Programmer Part I

Part Il—Logic Script Language Elements

7 Introduction

Scanner Logic Script is a high-level, structured, procedural language. It is a domain-
specific language designed to allow building logic control programs and is not an all-
purpose programming language. The programming language elements available are
intentionally limited to being a subset of features normally available in general
purpose languages. This helps make Scanner Logic Script easier to learn and use, and
ensures that programs cannot be written that may affect the integrity of the primary
function of the Scanner 3100 as a metrological device.

27

Part I Scanner Logic Programmer

8 Comments

8.1 General Description
A comment is text that is ignored by Scanner Logic Script when a program is
executed. You can use comments to describe what is happening in the program or
make other kinds of notes. There are two kinds of comments: block comments and
end-of-line comments.

A block comment begins with the characters /* and ends with the characters */.
Block comments must be placed between other statements. That means they can be
placed on the same line at the beginning or end of a statement, but cannot be
embedded within a simple (one-line) statement.

Example 8.1-1. Block comment

/*
This is a block comment
W

A single line comment begins with the characters // (two forward slashes) and ends
with the end of the line. The comment can exist by itself on a line, or come after
program code on a line.

Example 8.1-2. Single line comments

//single line comments extend to the end of the line

HoldingRegl.Value = 2; // this is another comment

You can nest comments—that is, comments can contain other comments—as in this
example.

Example 8.1-3. Nested comments

/* Here are some
//nested comments

*/

28

Scanner Logic Programmer Part I

9 Literal Values

9.1

9.2

General Description
A literal is a fixed value that evaluates to itself. It is interpreted just as it is written.

Numeric Literals

A numeric literal is a sequence of digits that can include other characters, such as a
unary minus sign, dot (decimal point), or "E" (in exponential notation).

In the current version of Scanner Logic Script parser interprets number literals as 32-
bit floating point numbers by default. Numbers without decimals are compiled as
floating-point numbers into the program code output file. The following are some
numeric literals:

Example 9.2-1. Numeric literals

-32767
3.1415

1.602E-19

9.3

9.4

Boolean Literal

Boolean literals are the keywords true and false.

String Literal

A string literal consists of a series of characters enclosed in a pair of double quote
marks, as in the following example:

Example 9.4-1. String literal

“A basic string.”

Any additional double quote marks used within the enclosing double quotes are
invalid. Otherwise, all letter, number, and symbol characters may be used within the
enclosing pair of double quote marks. Single quote marks are not supported. Escape
sequence characters are not supported.

For example, the following string is invalid:

29

Part I

Scanner Logic Programmer

Example 9.4-2. Invalid string literal

“Additional “quotes” are invalid.”

Strings are not a data type that can be modified or assigned within the program code
of a Scanner Logic program. They are used as parameter values within the Program
Information and the Program Resource Declaration regions of a script program.

String literals are limited in their maximum lengths. The number of characters that
may be used in a string value depends on the parameter that is being assigned. In the
reference tables, value type codes like <str32> are used to indicate how long a string
can be.

Some parameters that require a string value can only accept certain specific strings.
In these cases, the value type code <options> is used in the reference tables, and the
allowable values are listed.

30

Scanner Logic Programmer Part I

10 Identifiers

10.1 General Description

An identifier is a name used to identify an item in the Scanner Logic Script program.
The item could be an object in the program, a property or method of an object, or
subroutine.

An identifier must begin with a letter and can be up to 32 characters long. Identifiers
can contain any of these characters:

Example 10.1-1. Valid identifier characters
ABCDEFGHIJKLOMNOPQRSTUVWXYZabcdefghijklomnopqgrstuvwxyz0123456789

Identifiers are case sensitive. For example, the identifiers myvariable and
MyVariable are not equivalent.

The following are examples of valid identifiers:

Example 10.1-2. Valid identifiers

Pressure
Stateol

Flow_Accumulation

The following are not valid identifiers:

Example 10.1-3. Not valid identifiers
C-

on&ready
411
pass~fail

1stState

31

Part I Scanner Logic Programmer

11 Keywords

11.1 General Description

A keyword is a reserved word in the Scanner Logic Script language. Keywords consist
of alphanumeric and special characters:

Example 11.1-1. Characters used in keywords
ABCDEFGHIJKLOMNOPQRSTUVWXYZabcdefghijklomnopqrstuvwxyz@0123456789_#

Keywords are globally defined. You should not attempt to reuse keywords in your
programs for resource, registers, or other object names.

11.2 Keyword Categories

This chapter lists Scanner Logic Script keywords in categories and provides a brief
description for each. The chapter numbers in the Ref. column indicate where to find
more information regarding the keyword.

Table 11.2-1. Program Structure Keywords

Keyword Description Ref.
program Denotes entire program scope Ch. 19
proginfo Block containing program information Ch. 20
resource Keyword used for declaring resource objects Ch. 21
registers Keyword used for declaring register objects Ch. 29
task Task declaration keyword Ch. 35
state State declaration keyword Ch. 36
initial Modifier that denotes declared state as the initial state for its task Ch. 36

Modifier for onEnter and onExit blocks that flags program to log

logged event when they are entered ch- 36
onEnter Declares onEnter code block for state Ch. 36
onLoop Declares onLoop code block for state Ch. 36
onExit Declares onExit code block for state Ch. 36
abortState System state entered when an abort command is invoked Ch. 38
failstate System state entered when runtime error is encountered by the ch. 39

program

32

Scanner Logic Programmer Part I
Keyword Description Ref.
subroutine Subroutine declaration keyword Ch. 40
hmifields Keyword used for declaring hmifields declaration keyword Ch. 50
Table 11.2-2. Program Flow Control Keywords
Keyword Description Ref.
£ Denotes code block only executed when attached logical expression ch 17
1 .
resolves to true
Denotes code block only executed when logical expression attached to
else) Ch. 17
preceding if statement resolves to false
Jumps out of current execution block (onEnter, onLoop, onExit)to
continue .) Ch. 17
its closing brace
Exits out of current subroutine block and execution returns to the
return . . o) Ch. 17
code following the location of its invocation
changestate Triggers a state transition Ch. 17
Table 11.2-3. Data Type Keywords
Keyword Description Ref.
bool Bool t t fal fable
oolean type: or
00 ype: true alse 1291
float 32-bit floating point t fable
-bit floating poin e
oa gp yp 1221
int 32-bit unsigned integer t fable
-bit unsigned integer type
uin g gertyp 1221
] Table
void void value type (for methods that have no return value) 159

Table 11.2-4. Literal Value Keywords

Keyword Description
true Boolean literal
false Boolean literal

33

Part I Scanner Logic Programmer

Table 11.2-5. Program Information Declaration Keywords

Keyword Description Ref.
ProgramName The name of the program Ch. 20
ProgramAuthor The name of the program author Ch. 20
ProgramOwner The name of the company that owns the program Ch. 20
ProgramVersion The program version as a floating-point number Ch. 20
ProgramCreationDate The creation date of the program as a string Ch. 20
onlineSourceAccess Declares minimum user sgcu.rity Iev§l required to access script ch. 20
source file in web interface
ProgramDescription Description of program’s purpose Ch. 20

Table 11.2-6. Resource and Registers Declaration Keywords

Keyword Description Ref.
alarms Used in declaring alarm objects Ch. 27
analogpidcontrollers Used in declaring analog PID controller objects Ch. 24
digitalpidcontrollers Used in declaring digital PID controller objects Ch. 25
digitalinputs Used in declaring digital input objects Ch. 23
digitaloutputs Used in declaring digital output objects Ch. 26
registerinputs Used in declaring register input objects Ch. 22
timers Used in declaring timer objects Ch. 28
accumulation Used in declaring accumulation type registers Ch. 33
configuration Used in declaring configuration type registers Ch. 30
holding Used in declaring holding type registers Ch. 32
maintenance Used in declaring maintenance type registers Ch. 31
working Used in declaring working type registers Ch. 34
user Used in declaring hmi field objects Ch. 50

34

Scanner Logic Programmer Part I
Table 11.2-7. Resource and Registers Parameter Keywords
Keyword Description Ref.
category Declaration parameter for category of units Ch. 21-34
description Declaration parameter for user string describing object Ch. 21-34
Declaration parameter that sets the initial value for a property of a
resource or registers object. There are many of this kind of
initial * .)) Ch. 21-34
- parameter, and they are listed in the reference tables for each object
type.
pidaction Declaration parameter for direct or reverse PID behavior Ch. 21-34
Declaration parameter for simple PID controller or constraint
pidtype . Ch. 21-34
override PID controller
Declaration parameter for direct or reverse PID behavior for
con_pidaction) , Ch. 21-34
constraint override controller
Declaration parameter for user-selected registerinputs resource to
con_processvar) . Ch. 21-34
use for constraint controller process variable
Declaration parameter for user-selected registerinputs resource to
processvar . Ch. 21-34
use for process variable
Declaration parameter for user-selected object property to use for
propertyname s Ch. 50
hmi field
rate Declaration parameter for rate scalar unit Ch. 21-34
Declaration parameter descriptive string describing the input tag
tagname Ch. 21-34
name
Declaration parameter for complete Scanner 3100 register tag
tagcode . .] Ch. 21-34
descriptor that is used as a source of input
units Declaration parameter for unit Ch. 21-34
Declaration parameter for user control over what properties of a
webcontrolflags | analogpidcontrollers or digitalpidcontrollers can be modified onthe | Ch. 21-34
web interface
Declaration parameter for specifying if a hmi field can be modified
webmodify) Ch. 50
from the web interface.

35

Part I Scanner Logic Programmer

Table 11.2-8. Preprocessor Directive Keywords

Keyword Description Ref.

#region Denotes beginning of collapsible code section Ch. 18
#endregion Denotes ending of collapsible code section Ch. 18

#pragma Denotes a special compiler directive Ch. 18

36

Scanner Logic Programmer Part I

12 Data Types

12.1

12.2

General Description

All values and objects in a program have a data type. The supported data types can be
categorized as primitive data types and object data types. Scanner Logic Script
supports a reduced set of data types to reduce complexity in the Logic Script
implementation and to make writing script programs simpler for users.

Primitive Data Types

Primitive data types are built-in value types. The following table lists the primitive
data types that are used in Scanner Logic Script.

Table 12.2-1. Primitive Data Types used in Scanner Logic Script

Data Type Represents Range
bool Boolean value true or false
float 32-bit floating point type -3.402823 x 10*® to + 3.402823 x 10°®
uint 32-bit unsigned integer type 0to 4,294,967,295
_ Empty string (“”) to 1024-character
string A string of characters _
strings
When used as a return type, specifies that
void the method or subroutine does not return a n/a
value

In the current version of Scanner Logic Script, all number literals are interpreted as
floating point numbers even if they have no fractional or decimal portion. Integer
number literals are automatically converted to float values when they are used in
expressions and statements. This has ramifications for numeric precision, as 32-bit
floating point numbers can only have about 6 significant digits of precision.

In the current version of Scanner Logic Script, strings are only used in providing values
for parameter assignment statements in the proginfo, resource, and registers
objects. They are not accessed nor manipulated in user program code.

Parameters used in parameter assignment statements for proginfo, resource,
registers, and system objects can be bool, float, uint, or string type. Literal
values of the correct type must be used when assigning values to parameters.
Arithmetic expressions, type casts, etc. are not supported in parameter assignment
statements.

37

Part I

Scanner Logic Programmer

12.3

Properties of objects have bool, float, or uint type. Currently, there are no string
properties implemented.

Arguments are values passed into methods or subroutines at their invocation. In the
current version of Scanner Logic Script, only methods of the Math object accept
arguments, which are float type. Currently, subroutines do not accept arguments.

Return values from methods and subroutines have a specified type. In the current
version of Scanner Logic Script, only methods of the Math object return values from
method calls, which are float type. Currently, subroutines do not return values and
must be declared with the void return type.

Type Conversion and Type Casting

Type conversion occurs when a value of one type is used in a situation that requires
another type. In some cases, a value of one type can be implicitly converted to
another type, for example, from a uint value to a float value. No special syntax is
required. Values of type uint can be directly assigned to float properties, and the
uint value will be implicitly converted to a floating-point value by the compiler.
When a uint value is converted to a float, the value is preserved, albeit with
potentially some loss of precision beyond about 6 significant digits.

Example 12.3-1. Implicit type conversion examples

// assigning a uint 1 to a float type property implicitly converts the value to 1.0
HoldingRegl.Value = 1;

// assigning a uint type property to a float property implicitly converts to float
HoldingReg2.Value = Timerl.Time;

In most other cases however, the parser will issue an error warning of type mismatch
when you try to use a value of the wrong type in a place where certain types are
required. This is because information may be lost in the conversion.

The most common situation of this sort is when assigning a value to a property. If the
literal value, or property value, or expression value that you are trying to store to the
property does not resolve to type that is compatible with the target property, the
value must be type cast to the appropriate type.

38

Scanner Logic Programmer Part I

Type casting forces a value of one type to be interpreted as a different type, possibly
changing the value. For example, if you wish to assign a float value to a uint

property, it must be explicitly cast to uint type, and any fractional part of the float
value will be truncated and lost.

Example 12.3-2. Explicit type conversion (type casting) examples

// assigning a float type property to a uint property requires a type cast to uint
Timerl.Time = (uint)HoldingRegl.Value;

// assigning a float 12.34 to a uint type property requires a type cast to uint
Timerl.Time = (uint)12.34;

Table 12.3-1 below lists the type conversions supported by Scanner Logic Script and
what happens to the values when they are converted.

Table 12.3-1. Supported Type Conversions

From To Requirement

uint uint No conversion needed.

Implicit conversion.
uint float Precision may be lost if the uint value has more than 6 significant
digits.

(bool) type cast required.
0 becomes false, all other values become true.

uint bool

(uint) type cast required.
float uint Any fractional part will be truncated, and the result is bounded to be
within 0 to 4,294,967,295.

float float No conversion needed.
bool) type cast required.
float bool ¢) typ g
0.0 becomes false, all other values become true.

(uint) type cast required.

bool uint
true becomes 1, false becomes O

float) type cast required.

bool float ¢) typ .
true becomes 1.0, false becomes 0.0

bool bool No conversion needed.

39

Part I

Scanner Logic Programmer

12.4

12.5

Run Time Numeric Bounds Handling

Since there is limited ability to report run time numeric errors to users, the current
implementation of Scanner Logic Script is designed not to halt the program when
numeric exceptions occur.

When an operation on an unsigned integer value produces an underflow below 0, the
result is bounded to 0. Similarly, when an overflow over 4,294,967,295 of an
unsigned integer occurs, the result is bounded to 4,294,967,295. When a floating-
point value is divided by 0, the floating-point value NaN results instead of a divide by
zero exception occurring. Take these behaviors into account when designing your
program.

Object Data Types

Object data types refer to objects in the program rather than simple values like
numbers or strings. There are various types of objects accessible in Scanner Logic
programs. They are pre-defined system objects like System RealTime, or they are
objects created by the parser to reflect the declarations made in program code for
things like RegisterInputResource or Task objects. There are no user-defined
types. You cannot declare or derive your own classes.

When you declare resource and registers items, Scanner Logic Script creates
variables for those types of objects using the name that you specify. When you
declare a task, Scanner Logic Script creates the object for the task, and the name
that you declare for the task is a variable of the Task type (note that the lowercase
word task is the keyword for declaring Task objects, and the uppercase word Task
is the name of the object type). Similarly, each state that is declared is an instance of
the State type, and its name is the variable of the State type.

Table 12.5-1. Object Types used in Scanner Logic Script

Object Type Represents Ref.

Alarms resource object type. Instances declared in

AlarmResource] Ch. 27
resource alarms declaration group.

Register Inputs resource object type. Instances

RegisterInputResource declared in resource registerinputs declaration Ch. 22

group.

DigitalInputResource

Digital Input resource object type. Instances declared Ch. 23
in resource digitalinputs declaration group. '

40

Scanner Logic Programmer Part I
Object Type Represents Ref.
Analog PID Controller resource object type. Instances
AnalogPIDControllerResource declared in resource analogpidcontrollers Ch. 24
declaration group.
Digital PID Controller resource object type. Instances
DigitalPIDControllerResource declared in resource digitalpidcontrollers Ch. 25
declaration group.
Digital Output resource object type. Instances
DigitalOutputResource declared in resource digitaloutputs declaration Ch. 23
group.
Timer resource object type. Instances declared by
TimerResource . .) Ch. 28
user in resource timers declaration group.
Configuration register object type. Instances declared
ConfigurationRegister by user in registers configuration declaration Ch. 30
group.
Maintenance register object type. Instances declared
MaintenanceRegister) . .) Ch. 31
by userin registers maintenance declaration group.
Holding register object type. Instances declared b
HoldingRegister g g . : yp' . Y Ch. 32
user in registers holding declaration group.
Accumulation register object type. Instances declared
AccumulationRegister by user in registers accumulation declaration Ch. 33
group.
Working register object type. Instances declared b
WorkingRegister g 8 . : y? i Y Ch. 34
user in registers working declaration group.
Task object type. Instances declared by user in
Task] Ch. 35
program code region.
State object type. Instances declared by user inside
State .] Ch. 36
task declaration bodies.
Real Time object type. Instances declared by Scanner
System_RealTime)] Ch. 42
Logic Script.
Flow Run object type. Instances declared by Scanner
System_FlowRun) i Ch. 43
Logic Script.
Flow Archive object type. Instances declared by
System FlowArchive .) Ch. 44
Scanner Logic Script.
Triggered Archive object type. Instances declared by
System_TriggeredArchive)) Ch. 45
Scanner Logic Script.

41

Part I

Scanner Logic Programmer

Object Type Represents Ref.
User Event Record object type. Instances declared by
System_UserEventRecord)] Ch. 46
Scanner Logic Script.
Printed Ticket object type. Instances declared by
System_PrintedTicket , , Ch. 47
Scanner Logic Script.
Display object type. Instances declared by Scanner
System_Display pray obl P)) Y Ch. 48
Logic Script.
Math object type. Instances declared by Scanner
System_Math)) Ch. 49
Logic Script.
User HMI object type. Instances declared by Scanner
HMI Fields Ch. 50

Logic IDE.

42

Scanner Logic Programmer Part I

13 Constants

13.1 General Description

A constant is a predefined identifier that resolves to a fixed literal value. Scanner
Logic Script defines the following mathematical constants. More information about
these constant values can be found in Chapter 49 about the System _Math object.

Table 13.1-1. Math Constants

Constant Data Type Description
Math.E float Euler’'s Number
Math.LN2 float Natural logarithm of 2
Math.LN10 float Natural logarithm of 10
Math.LOG2E float Base-2 logarithm of e
Math.LOG1@E float Base-10 logarithm of e
Math.PI float Pi, the ratio of a circle’s circumference to its diameter

13.2 Remarks

User-defined constants are not supported in the current version of Scanner Logic
Script. If you wish to have a value represented by an identifier in your code, you can
use a WorkingRegister object and pre-set the Value property using the

initial Value parameter in the object declaration (see Chapter 34).

43

Part I

Scanner Logic Programmer

14 Variables

14.1

14.2

General Description

A variable is a name that is given to a data value or an object that Scanner Logic
programs can manipulate. Variable names follow the rules for Identifiers in Chapter
10.

The names that are assigned to the various objects in the Program Declarations
Region (see Chapters 21 to 34) are in effect user-declared object type variables. The
names given to tasks and states in the Program Code Region (see Chapters 35 to 36)
are also in effect user-declared object type variables.

The system objects (see Chapter 41 to 49) are accessed by using system-defined
object type variable names.

Remarks

In the current version of Scanner Logic Script, there are no user-declared local
variables or global variables for primitive data types like bool, float, or uint. This
limitation significantly simplifies memory management and stack management issues
in the program host environment. This reduced complexity allows the Scanner’s logic
controller functionality to be compartmentalized and decoupled from the device’s
primary measurement functions, thereby protecting its measurement integrity.

The WorkingRegister objects function as global variables. They have a Value
property in which intermediate value, calculation results, etc. can be stored (see
Chapter 34).

44

Scanner Logic Programmer Part I

15 Operators

15.1 General Description
An operator is a program element that specifies an operation to perform in an
expression or statement. An operation is the evaluation of an expression that
contains an operator to produce a value from one or more operands. An operand is a
value or an expression that is provided as input to an operator.

15.2 Operator Categories
Scanner Logic Script provides different categories of operators. Operators that
operate on two values are called binary operators, while operators that operate on a
single value are known as unary operators.

The following statement contains a single unary operator and a single operand. The
increment operator (++) modifies the operand (HoldingRegl.Value).

Example 15.2-1. Unary operator example
HoldingRegl.Value++;

The following statement contains two binary operators, each with two operands. The
assignment operator (=) has the uint property HoldingRegl.Value and the
expression 2 + 3 as operands. The expression 2 + 3 itself consists of the addition
operator and two operands, 2 and 3.

Example 15.2-2. Binary operators example
HoldingRegl.Value = 2 + 3;

Certain operators are called primary operators because they are evaluated first
before any other operators in an expression, that is, they have the highest
precedence. Operators that are within the same category below share the same
precedence level. The categories are listed in order of precedence.

Table 15.2-1. Primary Operators

Operator Description Example
Member Access
Property and method members of objects are accessed via the X.y
dot operator.

45

Part I Scanner Logic Programmer
Operator Description Example
Invocation
£00) Methods of objects or subroutines of the program are invoked x.y()
X
with the parentheses following the method name. There may be x()
zero or more parameters within the parentheses.
Postfix Increment
X++ Returns the value of x and then updates the storage location for x X++
with x + 1.
Postfix Decrement
X-- Returns the value of x and then updates the storage location for x X++
with x - 1.
Table 15.2-2. Unary Operators
Operator Description Example
|dentity
+)) +X
As a unary operator, + has no effect and is removed on compile.
Numeric Negation
- Only integers can be subtracted from dates. Scanner Logic Script -X
interprets such an integer as a number of seconds.
Logical Negation.
! A unary logical operator that results in true if the operand to its Ix
right is false, and false if the operand is true.
Prefix Increment
++X Returns the value of x after updating the storage location of x ++X
with x + 1.
Prefix Decrement
--X Returns the value of x after updating the storage location of x --X
with x - 1.
Type Casting
Returns the value of x converted to a value of the type specified
by the type T in the parentheses. The only valid types for type
(T)x casting are uint, float, and bool. Type casting is most (float)x
commonly used in using or writing to properties that have a type
that needs to be matched. See Type Conversion and Type Casting
for more information about type casting.

46

Scanner Logic Programmer

Part Il

Table 15.2-3. Arithmetic Operators

Operator Description Example

Multiplication

* A binary arithmetic operator that multiplies the number to its left X *y
and the number to its right.
Division

/ A binary arithmetic operator that divides the number to its left by X /y
the number to its right.
Modulus
A binary arithmetic operator that divides the number to its left by

% the number to its right and returns the remainder as its result. X %y
This remainder is not restricted to being an integer and can be a
floating-point value.
Addition
A binary arithmetic operator that adds the number or date to its

+ left and the number or date to its right. Only integers can be X +y
added to dates. Scanner Logic Script interprets such an integer as
a number of seconds.
Subtraction

- The binary operator subtracts the number to its right from the X -y
number or date to its left.

Table 15.2-4. Relational Operators
Operator Description Example

Greater than
A binary comparison operator that results in true if the value of
the left-hand operand is greater than the value of the right-hand
operand.

> X >y

Both operands must evaluate to values of the same class. If they
don’t, Scanner Logic Script attempts to coerce the right-hand
operand to the class of the left-hand operand.

47

Part I Scanner Logic Programmer

Operator Description Example

Less than

A binary comparison operator that results in true if the value of
the left-hand operand is less than the value of the right-hand
operand.

Both operands must evaluate to values of the same class. If they
don’t, Scanner Logic Script attempts to coerce the right-hand
operand to the class of the operand to the left.

Greater than or equal to

A binary comparison operator that results in true if the value of
the left-hand operand is greater than or equal to the value of the
right-hand operand.

Both operands must evaluate to values of the same class. If they
don’t, Scanner Logic Script attempts to coerce the right-hand
operand to the class of the operand to the left.

Less than or equal to

A binary comparison operator that results in true if the value of
the left-hand operand is less than or equal to the value of the
right-hand operand.

Both operands must evaluate to values of the same class. If they
don’t, Scanner Logic Script attempts to coerce the right-hand
operand to the class of the operand to the left.

Table 15.2-5. Equality Operators

Operator Description Example

Equality
A binary comparison operator that results in true if its two

== X ==
operands have the same values. The operands can be of any y
literal type.
Inequality

= A binary comparison operator that results in true if its two x I=y

operands have different values. The operands can be of any class.

48

Scanner Logic Programmer Part I
Table 15.2-6. Conditional AND Operator
Operator Description Example
Conditional AND
&& A binary logical operator that combines two Boolean values. The X && y
result is true only if both operands evaluate to true.
Table 15.2-7. Conditional OR Operator
Operator Description Example
Conditional OR
|| A binary logical operator that combines two Boolean values. The x ||y

result is true if either operand evaluates to true.

Table 15.2-8. Assignment and Compound Assignment Operators

Operator Description Example Equivalent To

Assignment

= Store the value of the expression on the right side into X =y X =y
the operand on the left side.
Addition Assignment
Add the value of the right operand to the value of the

+=) X +=y X =X+Yy
left operand, store the result in the left operand, and
return the new value.
Subtraction Assignment
Subtract the value of the right operand from the value

-= X -= X = X -
of the left operand, store the result in the left operand, y y
and return the new value.
Multiplication Assignment
Multiply the value of the right operand by the value of

*= . X *=y X =Xx%*y
the left operand, store the result in the left operand,
and return the new value.
Division Assignment
Divide the value of the left operand by the value of the

/= . . X /=y Xx=x/y
right operand, store the result in the left operand, and
return the new value.

49

Part I Scanner Logic Programmer
Modulus Assignment
Divide the value of the left operand to the value of the
%= . . . X %=y X =X%Yy
right operand, store the remainder in the left operand,
and return the new value.
15.3 Operator Precedence

Each operator has a defined precedence. In an expression that contains multiple
operators that have different precedence levels, the precedence of the operators
determines the order in which the operators are evaluated. When evaluating
expressions, Scanner Logic Script evaluates the operators with higher precedence
before lower precedence operators. Parentheses can be used to cause expressions
containing lower-precedence operators to be evaluated before higher-precedence

operators.

In the following expression, for example, the operations are not simply performed
from left to right—the multiplication operation 2 * 5 is evaluated first, because the
multiplication operator has higher precedence than the addition operator.

Example 15.3-1. Operator precedence — multiplication has higher precedence than addition

12+2*5

12 + (2 *5) // equivalent expression

// result: 22

Table 15.3-1 below shows the order in which Scanner Logic Script operators are

evaluated.

Table 15.3-1. Operator precedence from highest to lowest

Order | Operators Associativity Notes

Parentheses around an expression are not
operators themselves. Instead, they cause the

1 (...) Innermost to outermost | enclosed expression to be evaluated and resolved
to a single value first before processing normal
precedence order.

2 X.y Left to right Member access

2 f(x) Left to right Method or subroutine invocation

50

Scanner Logic Programmer

Part Il

Order | Operators Associativity Notes
Since the operand of a postfix increment or postfix
3 X+ N decrement operation is a variable or a property,
one
X-= and the result of the operation is a uint or float,
these operators cannot be used associatively.

4 J_'i Innermost to outermost Numeric identity and negation

5 ! Innermost to outermost | Logical negation
Since the operand of a prefix increment or prefix
decrement operation is a variable or a property,

6 J_'J_'i None and the result of the operation is a uint or float,
there cannot be more than one of these operators
inarow.

7 (T)x Innermost to outermost | Explicitly convert x to type T

*
8 / Left to right Multiplicative operators
%
9 f Left to right Additive operators
R Since the result of relational operators is bool, and
10 5= N the operands of these operators cannot be bool,
one
< there cannot be more than one of these operator in
<= arow

11 Tf Left to right Equality operators

12 && Left to right Conditional AND

13 | Left to right Conditional OR

= Assignment operations are processed from right to
+=
= , left with equal precedence, regardless of the kind of

14 N Right to left , , L .

arithmetic operation in compound assignment
é: operators.
15.4 Associativity

When two or more operators that have the same precedence are present in an
expression, they are evaluated based on associativity. Left-associative operators are
evaluated in order from left to right. For example, x * y / z is evaluated as (x * y) / z.
Right-associative operators are evaluated in order from right to left. For example, the
assignment operator is right associative.

51

Part I Scanner Logic Programmer

Example 15.4-1. Assignment operator is right-associative

a =b = c;

a = (b =c); // equivalent expression

—_
Q
]

b) = c; // ERROR! NOT equivalent expression

The Associativity column in Table 15.3-1 shows the associativity type of the
operators. The word “None” in the Associativity column indicates that you cannot
have multiple consecutive occurrences of the operation in an expression. For
example, the expression 3 > 2 > 1 is not legal because the associativity for the
greater than operator is “None.”

To evaluate expressions with multiple unary operators of the same order, Scanner
Logic Script applies the operator closest to the operand first, then applies the next
closest operator, and so on. For example, the expression ! | I true is equivalent to
(! ('true)).

Whether the operators in an expression are left associative or right associative, the
operands of each expression are evaluated from left to right first, before applying the
operation. The following examples illustrate the order of evaluation of operators and
operands.

Table 15.4-1. Order of evaluation of operators and operands

Statement Order of Evaluation
a=>b a, b, =
a=b+c a, b, ¢, +, =
a=b+c*d a, b, ¢, d, *, +, =
a=b*c+d a, b, ¢, ¥, d, +, =
a=b-c+d a, b, ¢, -, d, +, =
a+=b -=c a, b, ¢, -=, +=

52

Scanner Logic Programmer Part I

15.5 Adding Parentheses

You can alter the order in which Scanner Logic Script performs operations by
grouping sub-expressions that you want evaluated first within parentheses. This
causes the inner sub-expression to be evaluated to a single result value, which is then
used as an operand in the outer expression that contains the parenthesized sub-
expression. If there are sub-expressions parenthesized within other sets of
parentheses, then the parenthesized expressions are evaluated from innermost to
outermost.

Table 15.5-1. Order of evaluation of operators and operands

Statement Order of Evaluation
a=(b+c)*d a, b, ¢, +, d, *, =
a=b - (c+d) a, b, ¢, d, +, -, =

a=(b+c)* (d-e) a, b, ¢, +, d, e, -, ¥, =

53

Part I Scanner Logic Programmer

16 Expressions

16.1 General Description

An expression is a sequence of one or more operands and zero or more operators
that can be evaluated to a single value, object, or method. Expressions can consist of
a literal value, a method invocation, an operator and its operands, or a simple name.
Simple names can be the name of a variable, type member, method parameter, or

type.

Expressions can use operators that in turn use other expressions as parameters, or
method calls whose parameters are in turn other method calls. Expressions can range
from simple to very complex.

Example 16.1-1. Examples of expressions
Math.Exp(5) + Math.PI

15 > RealTime.Month
Math.Sin(Math.Cos(ConfigurationRegl.Value))
Ifalse

((x < 10) & (x > 5)) || ((x > 20) && (x < 25))

Expressions are used in programs to represent or derive values. The simplest kinds of
expressions, called literal expressions, are representations of values in programs.
More complex expressions typically combine literals, variables, operators, and object
specifiers.

16.2 Expression Values

In most of the contexts in which expressions are used, for example in statements or
method parameters, the expression is expected to evaluate to some value. If x and y
are integers, the expression x + y evaluates to a numeric value. The expression
Math.Cos(x) evaluates to a float because that is the return type of the method.

However, although a type name (for example, bool, float, uint) is classified as an
expression, it does not evaluate to a value and therefore can never be the result of
any expression. You cannot pass a type name to a method parameter, or use it in a
new expression, or assign it to a variable.

54

Scanner Logic Programmer Part I

Every value has an associated type. For example, if x and y are both variables of type
float, the value of the expression x + vy is also typed as float. If the value is assigned
to a variable of a different type, or if x and y are different types, the rules of type
conversion are applied. For more information about how such conversions work, see
Table 12.3-1.

16.3 Operator precedence and associativity

The way in which an expression is evaluated is governed by the rules of associativity
and operator precedence. For more information, see Chapter 15.

Most expressions, except assignment expressions and method invocation
expressions, must be embedded in a statement. For more information, see Chapter
17.

16.4 Literals and simple names

The simplest types of expressions are literals. A literal is a constant value that has no
name. For example, in the following code example, the values 5, 1.2, and true are
literal values: For more information on literals, see Chapter 29.

Example 16.4-1. Literal expression examples
HoldingRegl.Value = 5;

if (true)
HoldingReg2.Value = 1.2;

16.5 Assignment expressions

Assignment expressions evaluate the sub-expression on the right side of the
assignment operator to produce a single value, which is stored into the variable or
object property that is on the left side of the assignment. The reason that
assignments can be considered expressions is that the value assigned to the left
operand is available to participate in other expressions. The type of the operand on
the left of the assignment operator is the type of the entire expression, and the entire
expression evaluates to the right value. It is possible to use an assignment expression
anywhere an expression value is required.

55

Part I

Scanner Logic Programmer

Example 16.5-1. Assignment expression examples

HoldingRegl.Value
WorkingRegl.Value

WorkingReg3.Value

16.6

Math.Cos(5);

Math.Pow(ConfigRegl.Value, 2) + 1;

WorkingReg2.Value = WorkingRegl * 1.1;

Invocation expressions

In the following code example, the calls to Cos, Sin, and Start are invocation
expressions.

Example 16.6-1. Invocation expression examples

HoldingRegl.Value

HoldingRegl.Value

Math.Cos(5);

Math.Cos(Math.Sin(2 * Math.PI));

Timerl.Start();

// this statement produces an error because the Start() method of the TimerResource
// object has a return type of void, i.e. it has no return value
HoldingRegl.Value = Timerl.Start();

16.7

A method invocation requires the name of the method, followed by parentheses and
any method parameters. Method invocations evaluate to the return value of the
method, if the method returns a value. Methods that return void cannot be used in
place of a value in an expression.

Remarks

Whenever a variable or object property is identified from an expression, the value of
that item is used as the value of the expression. An expression can be placed
anywhere in Scanner Logic Script program code where a value or object is required,
as long as the expression ultimately evaluates to the required type.

Certain types of expressions can be used alone as a statement, forming expression
statements. Assignment expressions, prefix/postfix increment/decrement
expressions, and invocation expressions cause actions to occur in the program in
addition to evaluating to a result value.

56

Scanner Logic Programmer Part I

17 Statements

17.1

General Description

The actions that a Scanner Logic Script program takes are expressed in statements. A
statement is a series of elements that follows a Scanner Logic Script syntax.
Statements can include keywords, resources, registers, operators, constants,
expressions, and so on.

Every Scanner Logic Script program consists of statements. When a program runs, it
executes the statements within blocks of program code in order and carries out their
instructions.

Common actions include declaring various program objects, assigning values, calling
methods or subroutines, and branching to one or another block of code, depending
on a given condition. The order in which statements are executed in a program is
called the flow of control or flow of execution. The flow of control may vary every
time that a program is run, depending on how the program reacts to input that it
receives at run time.

A statement can consist of a single line of code that ends in a semicolon, or a series of
single-line statements in a block. A statement block is enclosed in start and end
braces ({}) and can contain nested blocks. Statement blocks do not require a
semicolon at their end. The following code shows two examples of single-line
statements, and a multi-line statement block:

Example 17.1-1. Some examples of statements
HoldingReg2.Value = Math.Exp(5) + Math.PI;

changestate NewState;

if (Alarml.IsAsserted == true)

{

HoldingRegl.Value++;
Timerl.Start();

CalculationsSubroutine();

57

Part I Scanner Logic Programmer

17.2 Types of Statements

The following categories of statements are supported in Scanner Logic Script.

Table 17.2-1. Types of statements

Category Description
Expression statements that calculate a value must store the value in a
variable.
Expression statements Assignment statements

Increment and decrement statements
Invocation statements

Selection statements enable you to branch to different sections of code,

Selection statements depending on one or more specified conditions.

if
else

Jump statements transfer control to another section of code.

Jump statements changestate
continue

return

The empty statement consists of a single semicolon. It can be used in
Empty statement places where a statement is required but no action needs to be
performed.

In the current version of Scanner Logic Script, there is no support for iteration type
statements (for loops, while loops, etc.). This is an intentional limitation to reduce the
complexity of the script execution engine and to avoid the need to protect the device
from excessive or infinite looping, which would jeopardize the integrity of the primary
measurement functionality of the Scanner 3100.

However, note that the operation of the state machine model that is the basis of
Scanner Logic programs, with its execution cycle mechanism, in effect provides a
controlled looping construct (see Chapter 36).

17.3 Assignment Statements
Assignment statements are a kind of expression statement. Assignment expressions
evaluate to a single value, with the additional action that the value is stored into a
variable or object property. When an assignment expression is used alone in a
statement, the assignment expression value is discarded after it has been stored in
the left operand.

58

Scanner Logic Programmer Part I

Example 17.3-1. Example assignment statement — resource object property

// assign a value to a property of a resource object
PIDController.Ki = 1.23;

Example 17.3-2. Example assignment statement — register object property

// assign a value to a property of a register object
HoldingRegl.Value = 7.14 * TemperatureReading.Value;

// equivalent to the statement above, since Value is the default property of
// HoldingRegister objects and of RegisterInputResource objects
HoldingRegl = 7.14 * TemperatureReading;

Example 17.3-3. Example assignment statement — system object property
// assign a value to a system object property
Display.SetValue = 2;

17.4 Increment and Decrement Statements

Prefix increment, postfix increment, prefix decrement, and postfix decrement
expressions can be used by themselves in expression statements. They can be used
alone in statements because they perform the action of storing the expression value
back into the operand in addition to resolving to a value. When increment/decrement
expressions are used in expression statements, their resulting expression value is
discarded.

Example 17.4-1. Example increment/decrement statements

CounterWorkingReg.Value++;
--WorkingResult;

WorkingResult--;

17.5 Invocation Statements

Invocation statements are a kind of expression statement. Invocation expressions can
potentially evaluate to a single return value, or they might not return any value.
Invocation expressions can be used alone in statements because they have the
potential to perform various actions in the program within the code of the method or
subroutine that is being invoked, in addition to potentially resolving to a value. When
an invocation expression that does resolve to a value is used alone in a statement,
the return value is ignored.

59

Part I

Scanner Logic Programmer

Example 17.5-1. Example invocation statements — subroutine calls

state SomeState

{
onEnter
{ ...}
onLoop
{
Subroutinel();
Subroutine2();
}
onExit
{ ...}
}

void subroutine Subroutinel()

{
}

void subroutine Subroutine2()

{
}

Example 17.5-2. Example invocation statements — object method calls

// resource object method call
Alarml.Assert();

// task object method call
Taskl.RestartExecution();

// system object method call
FlowRunl.EnableAccumulation();

// math object method call
WorkingResult.Value = Math.Tan(1.1);

17.6 Selection Statements

A selection statement causes the program control to be transferred to a specific flow

based upon whether a certain condition is true or not.

60

Scanner Logic Programmer

Part Il

Example 17.6-1. Selection statements

if (Pressure.Value > 100)
FlowRunl.EnableAccumulation();

if (Pressure.Value > 100)
FlowRunl.EnableAccumulation();

else
FlowRunl.DisableAccumulation();

if (Pressure.Value > 100)

{
FlowRunl.EnableAccumulation();
HoldingRegl.Value = Pressure.Value;
Alarml.Deassert();

}

else

{
FlowRunl.DisableAccumulation();
Alarml.Assert();

}

17.7 Jump Statements

Branching is performed using jump statements, which cause an immediate transfer of
the program control. The following keywords are used in jump statements

Table 17.7-1. List of program control keywords

Keyword

Description

Immediately triggers a transition to the target state, executes onExit
changestate block of current state then onEnter block of target state. May only be
invoked in the onLoop block of a state object.

Immediately jumps program to the end of the current code block and
continue continues to end of execution cycle. May only be used within the
onEnter, onLoop, and onExit blocks of a state object.

End execution of current subroutine. May only be used within a
return subroutine. Can be omitted if the subroutine does not return a value and
the program logic flow does not need to exit subroutine early.

Scanner Logic programs are modeled on a state machine concept. Program flow
remains looping inside a state until conditions that trigger a transition to another
state are detected. The changestate statement is the mechanism by which
programs transition between states. This statement consists of the keyword
changestate, followed by the name of a state within the same task, followed by a

semicolon.

61

Part I Scanner Logic Programmer

The continue statement is used to finish a script execution cycle before the normal
end of the code in the current execution block (onEnter, onLoop, onExit) of a state
object. It consists of the keyword continue followed by a semicolon. It causes
program flow to skip over all the subsequent code statements in the execution block
and go to the end brace of the block. If a continue statement is used within an
onEnter block, execution will continue into the onLoop block as usual. If a continue
statement is used within an onLoop block, the execution cycle ends and program flow
resumes at the top of the onLoop block at the next execution cycle. If a continue
statement is used in an onExit block, program flow enters the onEnter block of the
target state object as usual.

The return statement is used within subroutine bodies to cause the program
execution flow to exit the subroutine at that point and return to executing the code
from the point immediately after where the subroutine was called. If the subroutine
returns no value, then the return statement consists of just the keyword return
followed by a semicolon. If the subroutine has a return type other than void, the
return statement must also include a return expression evaluating to a single value
of the return type placed between the keyword and the semicolon. The return
statement can be omitted for subroutines with no return value if there is no need for
program flow to exit the subroutine before the end of the code statements in its
body.

Example 17.7-1. Example jump statements

state Monitoring

{
onEnter
{
if (ContactAlarm.IsAsserted)
continue;
CheckContact();
}
onLoop
{
if (Temperature < 0)
changestate Heating;
}
onExit
{
}
}

state Heating
{

62

Scanner Logic Programmer Part I

void subroutine CheckContact()

{
if (Contact.IsActive)
{
ContactAlarm.Assert();
return;
}
// some other actions
return;
}

17.8 Embedded Statements

Some statements, including if and if...else, always have an embedded statement
that follows them. This embedded statement may be either a single statement or
multiple statements enclosed by start and end braces in a statement block. Even
single-line embedded statements can be enclosed in {} braces, as shown in the
following example.

Example 17.8-1. Embedded statements — single-line and statement block

// single-line embedded statement
if (Pressure.Value > 100)
FlowRunl.EnableAccumulation();

// single-line embedded statement placed in a statement block
if (Pressure.Value > 100)

FlowRunl.EnableAccumulation();

// multiple statements in a statement block; the block takes the place of the
// single-line embedded statement
if (Pressure.Value > 100)

{
FlowRunl.EnableAccumulation();
HoldingRegl.Value = Pressure.Value;
DigitalOutl.Activate();

}

63

Part I Scanner Logic Programmer

17.9 Nested Statement Blocks

Statement blocks can be nested, as shown in the following code:

Example 17.9-1. Nested statement blocks
if (Pressure.Value > 100)

{
if (Temperature.Value > 10)
{
FlowRunl.EnableAccumulation();
HoldingRegl.Value = Pressure.Value;
DigitalOutl.Activate();
}
else
{
FlowRunl.DisableAccumulation();
DigitalOutl.Deactivate();
}
}

17.10 Parameter Assignment Statements
There is another kind of assignment statement that is only used in the declaration of
the proginfo object and of the resource and registers objects. Parameter
assignment statements have a parameter name, a colon instead of an equals sign as
the assignment operator, a literal value, and semicolon. This type of statement syntax
is only valid within the bodies of the object declarations. Each of the chapters in O list
the available declaration parameters for each object type.

Example 17.10-1. Example parameter assignment statements

proginfo
{

ProgramName: "Brewer Method";

ProgramVersion: 1.0;

resource registerinputs

{
01: SurfacePressure
{
description: "The pressure at the surface of the well";
category: "Static Pressure (gauge)";
units: "psig";
}
}

64

Scanner Logic Programmer Part I

18 Preprocessor Directives

A preprocessor directive is composed of the # symbol and an identifier. The directive
may be followed by directive text on the same line that is used by the preprocessor
directive.

18.1 Region and Endregion Directives

Scanner Logic Script uses the directives #region and #endregion to set apart certain
sections of the program code for special treatment in the Scanner Logic Script IDE.
The #region directive is used to mark the text as being collapsible in the IDE editor
window. Entire sections of text can be demarcated in this way to aid in organizing the
script document or to improve readability by removing visual clutter from around the
important parts of the program.

Example 18.1-1. Example region directives

program

{

#region Program Declarations

resource alarms

{
}
#endregion

task Main

{

#region A set of related states
state Statel

{ ...}
state State2
{ ...}
state State3
{ ...}
#endregion

65

Part I

Scanner Logic Programmer

18.2

Pragma directive

The #pragma directive is used to issue a special command to the compiler. These
commands are defined by the Scanner Logic Script language development team for
special purposes. An example of such a command is #pragma nometrics, which
disables the function of the compiler that verifies that characteristics of the binary
program code like path execution times and maximum device stack usage are not

exceeded.

66

Scanner Logic Programmer Part Il

Part Ill—Logic Script Objects

19 Program Object

19.1 General Description

The Scanner Logic Script program is contained within the Program object, which is
held in a single text-based file with a file name ending with the “SLOGIC” extension.
The Program object begins with the program keyword, and the body of the Program
object is enclosed within a pair of open and close braces.

The content of the Program body is organized into 5 regions. Most of these regions
are “collapsible” in the code editor (IDE), so that entire sections of code can be
consolidated into a single display line to improve visibility of more important areas of
code.

The regions of the program should be maintained in the order shown in Example
19.1-1.

Example 19.1-1. Overall structure of the program object

program

{

#region Program Information

proginfo

{
i..
#endregion
#region Program Declarations

resource alarms

{

registers configuration

{

67

Part Il

Scanner Logic Programmer

#endregion

task Ma
{

}
#region Sy

abortSt
{

failSta
{

#endregion

#region Su

in

stem State Declarations

ate

te

broutines

void subroutine Sub()
{
}
#endregion
}
19.2 Program Information Region
By convention, the Program Information region should be enclosed between
#region..#fendregion preprocessor directives, with “Program Information” as the
text for the #region directive, albeit the compiler does not enforce this structure.
This region contains the proginfo object declaration. This object holds the
identifying information about the program that is accessible from within the Scanner
3100 web interface.
See Chapter 20 for more information about the proginfo object.
19.3 Program Declarations Region

By convention, the Program Declarations region should be enclosed between
#region..#fendregion preprocessor directives, with “Program Declarations” as the
text for the #region directive, albeit the compiler does not enforce this structure.

68

Scanner Logic Programmer Part Il

19.4

19.5

19.6

This region contains resource and registers object declaration groups. These
declaration groups contain declarations items for Scanner 3100 inputs and outputs
that will be used within the program.

See Chapters 21 to 34 for more information about resource and registers
objects.

System Declarations Region

By convention, the System Declarations region should be enclosed between
#region.#fendregion preprocessor directives, with “System Declarations” as the
text for the #region directive, albeit the compiler does not enforce this structure.

This region contains abortState and failState declarations. These special state
objects contain the user code that will execute in the case of a user abort signal or a
fatal program error.

See Chapters 37 to 39 for more information about abortState and failState.

Program Code Region

The Program Code region, where the logic and control instructions are declared, is
not enclosed between #region..#tendregion preprocessor directives. It simply lies
between the System Declarations region and the Subroutines region. By default,
when you start a new program in the IDE, this area of the program file is not set to
collapsible. However, you are free to add your own #region..#endregion directives
to create your own custom collapsible code regions.

This region contains the task declarations, each of which contain state declarations.
User code resides in the onEnter, onLoop, onExit sections of state objects.
During program execution, each active task runs in parallel with the other tasks, and
has one current state. User code can change the current state of each task when
specified conditions are fulfilled.

See Chapters 35 to 36 for more information about task and state objects.

Subroutines Region

By convention, the Subroutines region should be enclosed between
#region..#fendregion preprocessor directives, with “Subroutines” as the text for the
#region directive, albeit the compiler does not enforce this structure.

69

Part Il

Scanner Logic Programmer

This region contains the global subroutine declarations. Subroutines are useful for

consolidating commonly used code in one location that can be invoked from code
within any state.

See Chapter 40 for more information about subroutines.

70

Scanner Logic Programmer Part Il

20 Program Information Object

20.1

20.2

General Description

The Program Information region provides information that is used to identify the
script program and determine its source code availability level for web interface
users. This information will appear in the Program Information screen of the web
interface. There are no properties or methods of the proginfo object that are
accessible by user code at run time.

Declaring proginfo

The Program Information declaration begins with the proginfo keyword, and
contains a list of parameter assignment statements within a pair of open and close
braces. All parameters are required, and there will be a parser error if any of the
information is missing.

Example 20.2-1. A proginfo declaration with parameter assignment statements

proginfo

{

ProgramName: "Brewer Method";

ProgramAuthor: "A. Programmer";

ProgramOwner: "Cameron Valves & Measurement";

ProgramVersion: 1.0;

ProgramCreationDate: "04/15/2016";

Access_OnlineSource: "allusers";

Access_OnlineControls: "allusers";

Access_WriteHMI: "allusers";

ProgramDescription: "Implements the Brewer Method example for dewatering";

}
20.3 Declaration Parameters
Table 20.3-1. Program Information object declaration parameters
Type -
Parameter Description
Code P
ProgramName <str32> Title of the script program.
ProgramAuthor <str32> Name of the script developer.
ProgramOwner <str32> Name of the script owner.
ProgramVersion float User defined version number of the script program.
ProgramCreationDate <date> Date on which the script program was compiled.

71

Part Il Scanner Logic Programmer

Type N
Parameter vp Description
Code
Whether source code is viewable via web interface, and
minimum access permission level required to view if
Access_OnlineSource <optiony viewable.

Allowable values: “nousers” | “adminusers” |
“configusers” | “maintusers” | “allusers”

The minimum access permission level required to activate
web interface controls for restarting and aborting execution
Access_OnlineControls <option> of the program.

Allowable values: “nousers” | “adminusers” |
“configusers” | “maintusers” | “allusers”

The minimum access permission level required to perform
writes on a user defined HMI web interface page.

Access_WriteHMI <option> .
Allowable values: “nousers” | “adminusers” |
“configusers” | “maintusers” | “allusers”
ProgramDescription ¢str1024> | Comment describing purpose or usage of program.

72

Scanner Logic Programmer Part Il

21 Logic Script Resource Objects

21.1 General Description

A resource object, or resource item, in the Scanner Logic Script environment provides
an interface to inputs, outputs, and device registers of the Scanner. Resource object
declarations of the same type are grouped together within a resource declaration

group.

Resource items have an index number within their resource declaration group, and
have user-assigned identifier names. A resource item declaration includes several
parameter assignment statements between a pair of open and close braces.

Example 21.1-1. A registerinputs resource declaration group with two RegisterInputResource
objects

resource registerinputs

¢ 01: CasingPressure
{
description: "Casing pressure reading";
tagname: "StatPres_InstReading";
tagcode: "m32_FC_IN_2 Holding InstReading";
category: "Static Pressure (absolute)";
units: "psia";
}
02: TubingPressure
{
description: "Tubing pressure reading";
tagname: "Analog2_ InstReading";
tagcode: "m32_FC_IN_6_Holding InstReading";
category: "Static Pressure (absolute)";
units: "psia";
}
}

73

Part Il Scanner Logic Programmer

21.2 Resource Object Types

The types of resource objects available in Scanner Logic Script are:

Table 21.2-1. Types of resource objects

Resource Type Usage | Qty Description

RegisterInputResource input | 32 | Allows program to read input values from the
Scanner 3100 device.

DigitalInputResource input 6 | Maps to the digital input ports of the Scanner 3100
to allow reading the state of the ports.

AnalogPIDControllerResource | output 2 | Provides a PID controller object whose output can
be mapped to a Scanner 3100 analog output port.

DigitalPIDControllerResource | output 1 | Provides a PID controller object whose output can
be mapped to a Scanner 3100 digital valve
controller output.

DigitalOutputResource output | 6 | Provides a digital output proxy object whose
output can be mapped to a Scanner 3100 digital
output port

AlarmResource output | 32 | Provides a controllable alarm object that is
accessible by the Scanner 3100 to be used in the
same ways as Scanner 3100 device alarms.

TimerResource utility | 8 | Provides an object that can keep track of the time
in seconds between an execution of the start and
stop methods.

21.3 Usage Notes

Declaration parameters initialize internal values in the resource objects at compile
time.

When declaring a resource item, some of the properties of the object may be
initialized using parameters beginning with an initial prefix and ending with the
property name. The ReloadInit() method of the resource objects reloads the initial
values into the properties during program execution.

Resource objects also have properties and methods that can be accessed by user
code at run time. Properties are named data values of an object that can be read or
written by user code. Some properties are read-only and cannot be modified by user
code. Methods are named actions of an object that can be invoked by user code.
Methods can potentially accept input arguments and return values.

74

Scanner Logic Programmer Part Il

All resource objects have a default property. In user code, the default property can be
omitted and the name of a register can be used by itself to resolve to its default
property. This can help make script programs easier to read and understand.

Example 21.3-1. Default Properties of Resource Objects

// these statements are equivalent; the default property of TimerResource is Time
if (Timerl.Time > 60)
changestate NextState;

if (Timerl > 60)
changestate NextState;

// these statements are equivalent; the default property of RegisterInputResource
// 1is Value
HoldingReg2.Value = RegisterInputl.Value + 10;

HoldingReg2.Value = RegisterInputl + 10;

75

Part Il Scanner Logic Programmer

22 Register Input Resource Object

22.1 General Description

RegisterInputResource objects are input resources. Each
RegisterInputResource object is an interface to a physical Scanner input or any
other register from the Scanner host environment.

Up to 32 RegisterInputResource objects may be declared for use in a Scanner
Logic Script program.

22.2 Required S3100 Device Configuration

A RegisterInputResource object has an associated measurement category, since
the Scanner registers that are imported via these objects all have a designated
measurement category. In most cases, the category will be automatically set by IDE
assistants when the register tagname is selected. In some cases, where the
measurement category of a Scanner register is dynamic (e.g. Analog Inputs), the
programmer must indicate the expected category. The script programmer can specify
the units (via category, unit, and rate parameters) of the value that is presented to
the program by the script execution engine.

The measurement category of each input register that corresponds to a declared
RegisterInputResource object will be verified at the beginning of the program and
at the start of each script execution cycle. If the category specified does not match
the category of the selected Scanner register, the Scanner Logic Script will encounter
a run time error and the failState state will be invoked.

Table 22.2-1. RegisterInputResource object required S3100 device configuration

Configuration .
Scanner Resource g Requirement
Parameter
Must match category of RegisterInputResource
Analog Input Transducer Type }

object

_ Must match category of RegisterInputResource
Pulse Input Accumulation Type biect
objec

22.3 Declaring RegisterinputResource Objects
The RegisterInputResource declaration group begins with the keywords resource
registerinputs, and contains a resource item declaration for each
RegisterInputResource item to be used in the program within a pair of open and

76

Scanner Logic Programmer

Part Il

close braces. Each resource item declaration consists of a unique resource index
number between 01 and 32 and a user defined identifier separated by a colon, and
contains a list of parameter assignment statements within a pair of open and close

braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.9, bool
: false). Unused resource items may be omitted from the resource declaration
group. If no RegisterInputResource items are required, the entire resource

declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 22.3-1. RegisterInputResource object declaration example

resource registerinputs

{

01:

{

SurfacePressure

description: "The pressure at the surface of the well";
tagname: "Analogl InstReading";

tagcode: "m32_FC_IN_5 Holding InstReading";

category: "Static Pressure (gauge)";

units: "psig";

: ActualFlowRate

description: "The measured flow rate";

tagname: "FlowRunl_LiquidOilVolumeFlowRate";

tagcode: "m32_FC_FR_1 HoldingAccum_LiquidOilVolumeFlowRate";
category: "Liquid Volume";

units: "m3";

rate: "/sec";

: TankTemperature

description: "Temperature that is monitored for activating the tank
tagname: "Analog2_InstReading";

tagcode: "m32_FC_IN 6 Holding InstReading";

category: "Temperature";

units: "degF";

heater";

77

Part Il Scanner Logic Programmer

22.4 Declaration Parameters

Table 22.4-1. RegisterInputResource object declaration parameters

Parameter Type Code Description
A user-provided string describing the RegisterInputResource
description <str256> .
object
tagname <tagname> The descriptive string describing the register tag name.
The complete Scanner 3100 register tag descriptor that is used as
tagcode <tagcode>)
the source of the input
The unit category of the S3100 input source. The category must
be selected if the input source has a dynamic category, otherwise
category <category> . .
the category will be set automatically.
See Chapter 51 for more information.
Numerator of the measurement unit desired for the value
imported from the Scanner 3100 register, and denominator if
units <unit> . . .
required for the specified measurement units category.
See Chapter 51 for more information.
Rate scalar unit desired for the value imported from the Scanner
3100 register. If the rate is not specified, then the value is
rate <rate>))
interpreted as not being a rate value.
See Chapter 51 for more information.

22.5 Properties

Table 22.5-1. RegisterInputResource object properties

Property Data Type | Access Description
Holds the value of the register inputs object, converted to

the measurement units specified in the declaration; since
Value

[default] float RO this is the default property of the object, this property

name can be omitted when referencing the object, and

the compiler will automatically use the Value property

22.6 Methods

All methods listed below do not accept parameters nor return values.

Table 22.6-1. RegisterInputResource object methods

Method Return Type Description

Clear() void Sets Value to 0.0 until next update.

78

Scanner Logic Programmer Part Il

22.7 Usage

Example File: UsingRegisterInputs.slogic

Here, a RegisterInputResource is used to access the live reading from analog input
1, when a low flow rate condition is met a changestate is triggered.

Example 22.7-1 RegisterInputResource object usage
resource registerinputs

01: TubingFlowRate

description: "Tubing Flow Rate in cubic meters per second live reading";
tagname: "Analogl_InstReading";

tagcode: "m32_FC_IN_5 Holding InstReading";

category: "Liquid Volume";

units: "m3";

rate: "/sec";

}
}
task Taskl
{ initial state MonitorFlowRate
onEnter { }
onLoop

if (TubingFlowRate < 1.50) changestate LowFlowRate;
}

onExit { }

state LowFlowRate

{
}

79

Part Il

Scanner Logic Programmer

23 Digital Input Resource Object

23.1

23.2

General Description

DigitalInputResource objects are input resources that are interfaces to physical
Scanner hardware digital inputs. If declared, each DigitalInputResource
corresponds directly to the physical DIO port with the matching index number in the
Scanner host environment.

Up to 6 DigitalInputResource objects may be declared for use in a Scanner Logic
Script program.

Required S3100 Device Configuration

The Scanner 3100 has 6 physical DIO ports that may be set to map to the declared
resource objects. The Digital I/O Mode of each DIO port that corresponds to a
declared DigitalInputResource will be verified at the beginning of the program
and at the start of each script execution cycle. If the Digital I/O Mode specified is not
“Input Mode”, the Scanner Logic Script will encounter a run time error and the
failState state will be invoked. Physical DIO ports are configured by default as
“Input Mode”.

Note: DigitalInputResource and DigitalOutputResource objects both map to
the same set of physical DIO ports and are mutually exclusive functions. A
DigitalInputResource and DigitalOutputResource defined at the same index
will generate a run time error and the failState state will be invoked.

Table 23.2-1. DigitalInputResource object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement

Digital In/Out Digital I/0 Mode Input Mode

23.3

Declaring DigitallnputResource Objects

The DigitalInputResource declaration group begins with the keywords resource
digitalinputs, and contains a resource item declaration for each
DigitalInputResource to be used in the program within a pair of open and close
braces. Each resource item declaration consists of a unique resource index number
between 01 and @6 and a user defined identifier separated by a colon, and contains a
list of parameters assignment statements within a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.0, bool
: false). Unused resource items may be omitted from the resource declaration

80

Scanner Logic Programmer Part Il

group. If noDigitalInputResource items are required, the entire declaration
group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 23.3-1. DigitalInputResource object declaration example

resource digitalinputs

{
01: HighPressureSwitchMyDigitalInputNamel
{
description: "High pressure switch";
}
02: StartWellTestMyDigitalInputName2
{
description: "External button for activating well test mode";
}
06: TankFullMyDigitalInputName6
{
description: "Tank limit signal";
}
}

23.4 Declaration Parameters

Table 23.4-1. DigitalInputResource object declaration parameters

Parameter Type Code Description

A user-provided string describing the purpose of the

description <str256> L. i
DigitalInputResource object.

23.5 Properties

Table 23.5-1. DigitalInputResource object properties

Property Data Type | Access Description
IsActive Indicates if the digital input is currently in the asserted
bool RO
[default] state
Number of consecutive seconds IsActive has been
ActiveTime uint RO
true
Number of consecutive seconds IsActive has been
InactiveTime uint RO false

81

Part Il Scanner Logic Programmer

23.6 Usage

Example File: UsingDigitalInputs.slogic

In this example, a DigitalInputResource item is declared which activates when it
receives a signal from a high-pressure switch. Upon activation, a changestate is
triggered.

Example 23.6-1. DigitalInputResource object usage

resource digitalinputs

{
01: HighPressureSwitch
{
description: "High pressure switch";
}
¥
task Taskl
{
state MonitorPressureSwitch
{
onEnter {}
onLoop
{
if (HighPressureSwitch.IsActive) { changestate HandleHighPressure; }
}
onExit {}
}
state HandleHighPressure
{
}
¥

82

Scanner Logic Programmer Part Il

24 Analog PID Controller Resource Object

24.1

24.2

General Description

AnalogPIDControllerResource objects are output resources. If declared, each
AnalogPIDControllerResource corresponds directly to the physical Analog Output
port with matching index number in the Scanner.

Up to 2 AnalogPIDControllerResource objects may be declared for use in a
Scanner Logic Script program.

Required S3100 Device Configuration

AnalogPIDControllerResource items are objects that exist within the Scanner
Logic Script program environment. They are not the same as the PID controllers that
are implemented by the Analog Outputs in the Scanner host environment, and their
outputs are not directly connected to any actual Scanner hardware outputs. Scanner
outputs need to be configured to follow Scanner Logic Script
AnalogPIDControllerResource outputs explicitly to manifest real-world effects.

The Scanner 3100 has 2 physical Analog Output ports that may be assigned to follow
the declared resource objects. The Analog Output Mode of each Analog Output that
corresponds to a declared AnalogPIDControllerResource item will be verified at
the beginning of the program and at the start of each script execution cycle. If the
Analog Output Mode specified is not “Track Scanner Logic Controller”, the Scanner
Logic Script will encounter a run time error and the failState state will be invoked.
Physical Analog Output ports are configured by default as “Disabled”.

Table 24.2-1. AnalogPIDControllerResource object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement

Analog Output Analog Output Mode Track Scanner Logic Controller

24.3

Declaring AnalogPIDControllerResource Objects

The AnalogPIDControllerResource declaration group begins with the keywords
resource analogpidcontrollers, and contains a resource item declaration for
each AnalogPIDControllerResource object to be used in the program within a pair
of open and close braces. Each resource item declaration consists of a unique
resource index number between @1 and @2 and a user defined identifier separated by
a colon, and contains a list of parameter assignment statements within a pair of open
and close braces.

83

Part Il Scanner Logic Programmer

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.0, bool
: false). Unused resource items may be omitted from the resource declaration
group. If no AnalogPIDControllerResource items are required, the entire
resource declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 24.3-1. AnalogPIDControllerResource object declaration example

resource analogpidcontrollers

{
01: SimpleAnalogPIDMyAnalogPIDControllerNamel

{

Description : A simple analog PID for controlling Gas Flow Rate (m3/hr)";
Webcontrolflags : ©x0000;

Processvar : FlowRunl_GasVolumeFlowRate;

Pidtype : "simplepid";

Pidaction : "reverse";

initial IsAutoMode : true;

// If pidtype is set as “simple”
initial_Period : 1;
initial_RangeHigh : 150;
initial_Rangelow : 50;

initial SetPoint : 100;
initial_SetPointTolerance : 1;
initial_SetPointDeadBand : 1.2;
initial OverrideValue : 0.7;
initial FailValue : 0.5;
initial Kp : ©.9;

initial Ki : 0.7,

initial Kd : 0.15;

02: AnalogPID_ConstraintOverrideMyAnalogPIDControllerName2

description : "An analog PID with a constraint override ...";
webcontrolflags : ©x0000;

processvar : FlowRun2_GasVolumeFlowRate;

pidtype : "constraintovrpid";
pidaction : "reverse";
initial_IsAutoMode : : true;

initial Period : 1;

initial RangeHigh : 150;
initial_Rangelow : 50;
initial_SetPoint : 100;

initial SetPointTolerance : 1;
initial SetPointDeadBand : 1.2;
initial OverrideValue : 0.7;
initial_FailValue : 0.5;
initial Kp : 0.9;

initial Ki : ©.7;

84

Scanner Logic Programmer

Part Il

initial Kd : ©.15;

// If pidtype is set as “constraintovr”

con_processvar
con_pidaction : "direct";
initial ConstraintPeriod : 4;

initial_ConstraintRangeHigh : 50;
initial_ConstraintRangelow : 10;
initial ConstraintSetPoint : 20;

initial ConstraintDeadBand : 2;
initial ConstraintKp : ©.95;
initial ConstraintKi : 0.7;
initial ConstraintKd : 0.05;

}

24.4 Declaration Parameters

: AnalogIn_StaticPressure;

Table 24.4-1. AnalogPIDControllerResource object declaration parameters

Parameter Type Code Description
A user-provided string describing the
description <str256> .
AnalogPIDControllerResource object
Bit encoded flags which control the permissions to
webcontrolflags uint)) .
modify properties on the web interface
RegisterInput | Selected RegisterInputResource object for
processvar .
Resource process variable
PID controller type
pidtype <option> Allowable values: “simplepid” |
“constraintovrpid”
. .) PID action
pidaction <option> .
Allowable values: “direct” | “reverse”
RegisterInput | Selected RegisterInputResource object for
con_processvar . .
Resource process variable for constraint controller
))] PID action for constraint controller
con_pidaction <option> .
Allowable values: “direct” | “reverse”
initial_IsAutoMode bool Initial state of the controller
initial Period uint Initial execution period of the controller
initial_RangeHigh float Initial process Variable high range
initial RangelLow float Initial process Variable low range
initial_ SetPoint float Initial point value set used in Auto mode

85

Part Il

Scanner Logic Programmer

Parameter Type Code Description
Initial set point tolerance value used in Auto
initial_SetPointTolerance float mode. The controller will stop adjusting if Error <
SetPointTolerance
Initial set point dead band value used in Auto
initial_SetPointDeadBand float mode. The controller will begin adjusting if Error
>= SetPointDeadBand
o] The initial Override Value (Fraction) used in
initial OverrideValue float
Manual Mode
o The initial Fail Value (Fraction) used if processvar
initial_FailValue float . .
is in a fail state
initial Kp float Initial proportional gain factor
initial Ki float Initial integral gain factor
initial Kd float Initial differential gain factor
o Initial execution period of constraint override
initial_ConstraintPeriod uint
controller
initial_ConstraintRangeHigh float Initial constraint Variable high range
initial_ConstraintRangelow float Initial constraint Variable low range
initial_ ConstraintSetPoint float Initial point value set in Constraint Override Mode
Initial Dead Band level for Constraint Override Set
initial_ConstraintDeadBand float .
Point
initial_ConstraintKp float Initial constraint controller proportional gain
initial_Constraintki float Initial constraint controller integral gain
initial Constraintkd float Initial constraint controller differential gain

86

Scanner Logic Programmer Part Il

24.5 Properties

Table 24.5-1. AnalogPIDControllerResource object properties

Data -
Property Access Description
Type
Output float RO The normalized output of the controller
[default]
The current normalized error between the Set Point
Error float RO .
and the process variable
IsAutoMode * bool RO Indicates true if the controller is in auto
Period * uint RO Active execution period of the controller
RangeHigh * float RO Process Variable high range
RangelLow * float RO Process Variable low range
SetPoint * float R/W Set Point value used in Auto mode
Set point tolerance value used in Auto mode. The
SetPointTolerance * float R/W controller will stop adjusting if Error <
SetPointTolerance
Set point dead band value used in Auto mode. The
SetPointDeadBand * float R/W controller will begin adjusting if Error >=
SetPointDeadBand
OverrideValue * float R/W Override Value (Fraction) used in Manual Mode
] Fail Value (Fraction) used if ProcessVar is in a fail
Failvalue * float R/W
state
Kp * float R/W Proportional gain factor
Ki * float R/W Integral gain factor
Kd * float R/W Differential gain factor
Actual execution period of constraint override
ConstraintPeriod * uint RO
controller
ConstraintRangeHigh * float RO Constraint Variable high range
ConstraintRangelLow * float RO Constraint Variable low range
ConstraintSetPoint * float R/W Set Point value in Constraint Override Mode
ConstraintDeadBand * float R/W Dead Band level for Constraint Override Set Point
ConstraintKp * float R/W Constraint controller proportional gain

87

Part Il Scanner Logic Programmer

Data -
Property Access Description
Type
Constraintki * float R/W Constraint controller integral gain
ConstraintKd * float R/W Constraint controller differential gain
Indicates true if the controller is in constraint
IsConstraintOverride bool RO)
override

* These properties can be initialized with initial_* parameters.

24.6 Methods

All methods listed below do not accept parameters nor return values.

Table 24.6-1. AnalogPIDControllerResource object methods

Method Return Type Description
Reset() void Resets the PID controller algorithm
Sets the controller into Auto mode where the output is
SetAutoMode() void)
determined by the controller
Sets the controller into Manual mode where the
SetManualMode() void) . .
output is determined by the OverrideValue
Reloads the initial values of properties specified in the
ReloadInit() void .
declaration
24.7 Usage

Example File: UsingAnalogPID.slogic

The sample script demonstrates how to setup and use
AnalogPIDControllerResource objects as Simple and Constraint Override PID
controllers.

24.7.1 Simple PID

The SimplePID_Task sets up a simple PID for controlling Gas Flow Rate on Flow Run 1.
The task starts in the ManualMode state where the flow value is shut. In the
AutoMode state, the PID controller is set to maintain the flow rate at its setpoint. A5
second input on PIDModeSwitch will change between the two modes.

88

Scanner Logic Programmer

Part Il

Example 24.7-1. AnalogPIDControllerResource object usage as a simple PID

resource digitalinputs

{
01: SimplePIDModeSwitch { ... }

}

resource registerinputs

{
01: FlowRunl_GasVolumeFlowRate { ... }

}

resource analogpidcontrollers

{
01: SimpleAnalogPID

{

description : "A simple analog PID for controlling Gas Flow Rate (m3/hr)";

webcontrolflags : 0x0000;

processvar : FlowRunl_GasVolumeFlowRate;

pidtype : "simplepid";
pidaction : "reverse";
initial_TIsAutoMode : false;
initial Period : 1;

initial RangeHigh : 150;
initial_Rangelow : 50;
initial_SetPoint : 100;
initial SetPointTolerance : 1;
initial SetPointDeadBand : 1.2;
initial OverrideValue : 0.7;
initial_FailValue : 0.5;
initial Kp : ©.9;

initial Ki : 0.7;

initial Kd : 0.15;

}

task SimplePID Task
{

initial state ManualMode

{

onEnter

{

SimpleAnalogPID.OverrideValue = 0.0;

SimpleAnalogPID.SetManualMode();
}

onLoop

{
}

onExit { }

if (SimplePIDModeSwitch.ActiveTime > 5) changestate

AutoMode;

89

Part Il Scanner Logic Programmer

state AutoMode

{
onEnter
{
SimpleAnalogPID.SetPoint = 125;
SimpleAnalogPID.SetAutoMode();
}
onLoop
{
if (SimplePIDModeSwitch.ActiveTime > 5) changestate ManualMode;
}
onExit { }
}

}
24.7.2 Constraint Override PID

The PressureOverridePID_Task sets up a PID for controlling Gas Flow Rate on Flow
Run 2 with a constraint override controller. The task starts in the ManualMode state
where the flow value is shut. In the AutoMode state, the PID controller is set to
maintain the flow rate at its setpoint. Both states will transition to a HighPressure
state where additional handling can be performed if the controller goes into
constraint override. A 5-second input on ConstraintovrpidModeSwitch will change
between the two modes.

Example 24.7-2. AnalogPIDControllerResource object usage as a PID with a constraint override
controller
resource digitalinputs

{
02: ConstraintovrpidModeSwitch { ... }
}
resource registerinputs
{
02: FlowRun2_GasVolumeFlowRate { ... }
03: AnalogIn_StaticPressure { ... }
}
resource analogpidcontrollers
{

02: AnalogPID PressureOverride
{
description : "An analog PID with a constraint override ...";
webcontrolflags : 0x0000;
processvar : FlowRun2_GasVolumeFlowRate;
pidtype : "constraintovrpid";
pidaction : "reverse";
initial IsAutoMode : false;
initial Period : 1;
initial RangeHigh : 150;

90

Scanner Logic Programmer

Part Il

initial_Rangelow : 50;
initial_SetPoint : 100;
initial SetPointTolerance : 1;
initial SetPointDeadBand : 1.2;
initial OverrideValue : 0.7;
initial FailValue : 0.5;
initial Kp : 0.9;
initial Ki : 0.7;
initial Kd : 0.15;
con_processvar : AnalogIn_StaticPressure;
con_pidaction : "reverse";
initial_ConstraintPeriod : 4;
initial_ConstraintRangeHigh : 50;
initial ConstraintRangelow : 10;
initial ConstraintSetPoint : 20;
initial ConstraintDeadBand : 2;
initial ConstraintKp : ©.95;
initial ConstraintKi : 0.7;
initial ConstraintKd : ©.05;
}
}

task PressureOverridePID_Task

{

initial state ManualMode

{

onEnter
AnalogPID_PressureOverride.ConstraintSetPoint = 30;

AnalogPID_PressureOverride.OverrideValue = 0.0;
AnalogPID_PressureOverride.SetManualMode();

}

onLoop

if (AnalogPID_PressureOverride.IsConstraintOverride)
changestate HighPressure;
if (ConstraintovrpidModeSwitch.ActiveTime > 5) changestate AutoMode;

}

onExit { }
}

state AutoMode
{

onEnter

AnalogPID_PressureOverride.ConstraintSetPoint = 125;
AnalogPID_PressureOverride.SetAutoMode();

}

onLoop

if (AnalogPID_PressureOverride.IsConstraintOverride)
changestate HighPressure;

if (ConstraintovrpidModeSwitch.ActiveTime > 5) changestate ManualMode;

}

onExit { }

91

Part Il

Scanner Logic Programmer

state HighPressure

92

Scanner Logic Programmer Part Il

25 Digital PID Controller Resource Object

25.1

25.2

General Description

DigitalPIDControllerResource objects are output resources. If declared, the
DigitalPIDControllerResource may be mapped to the Digital Valve Controller in
the Scanner.

Up to 1 DigitalPIDControllerResource object may be declared for use in a
Scanner Logic Script program.

Required S3100 Device Configuration

The DigitalPIDControllerResource object exists within the Scanner Logic Script
program environment. It is not the same as the PID controller that is implemented in
the Digital Valve Controller of the Scanner host environment, and its outputs are not
directly connected to any actual Scanner hardware outputs. Scanner outputs need to
be configured to follow Scanner Logic Script DigitalPIDControllerResource
outputs explicitly in order to manifest real-world effects.

The Scanner 3100 has one Digital Valve Controller that may be assigned to follow the
declared DigitalPIDControllerResource object. The Digital Valve Controller
Mode of the Digital Valve Controller will be verified at the beginning of the program
and at the start of each script execution cycle. If the Digital Valve Controller Mode
specified is not “Track Scanner Logic Controller”, the Scanner Logic Script will
encounter a run time error and the failState state will be invoked. Digital Valve
Controller Mode is configured by default as “Disabled”.

Table 25.2-1. DigitalPIDControllerResource object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement

Digital Valve Controller Digital Valve Controller Mode Track Scanner Logic Controller

25.3

Declaring DigitalPIDControllerResource Objects

The DigitalPIDControllerResource declaration group begins with the keywords
resource digitalpidcontrollers, and contains a resource item declaration for
each DigitalPIDControllerResource to be used in the program within a pair of
open and close braces. Each resource item declaration consists of a unique resource
index number (in this case, just 81) and a user defined identifier separated by a colon,
and contains a list of parameter assignment statements within a pair of open and
close braces.

93

Part Il

Scanner Logic Programmer

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.0, bool
: false). Unused resource items may be omitted from the resource declaration
group. If noDigitalPIDControllerResource items are required, the entire
resource declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 25.3-1. DigitalPIDControllerResource object declaration as a simple PID

resour

{
01:

{

}

ce digitalpidcontrollers
SimpleDigitalPID

description : "A simple digital PID for controlling Gas Flow Rate (m3/hr)";
webcontrolflags : 0x0000;

processvar : FlowRunl_GasVolumeFlowRate;
pidtype : "simplepid";

pidaction : "reverse";

initial IsAutoMode : false;
initial_Period : 1;

initial_RangeHigh : 150;
initial_Rangelow : 50;

initial SetPoint : 100;

initial SetPointTolerance : 1;
initial_SetPointDeadBand : 1.2;
initial_OverrideValue : 0.7;

initial FailValue : 0.5;

initial Kp : ©.9;

initial Ki : ©.7;

initial Kd : 0.15;

Example 25.3-2. DigitalPIDControllerResource object declaration as a PID with a constraint

override controller
resource digitalpidcontrollers

{
o1:

{

DigitalPID_PressureOverride

description : "A digital PID with a constraint override ...";
webcontrolflags : 0x0000;

processvar : FlowRunl_GasVolumeFlowRate;
pidtype : "constraintovrpid";

pidaction : "reverse";
initial_TIsAutoMode : false;

initial Period : 1;

initial_RangeHigh : 150;
initial_Rangelow : 50;

initial_SetPoint : 100;
initial_SetPointTolerance : 1;

initial SetPointDeadBand : 1.2;

initial OverrideValue : 0.7;

94

Scanner Logic Programmer

Part Il

initial Failvalue :

initial Kp : ©.9;
initial Ki : ©.7;

initial Kd : ©.15;
: AnalogIn_StaticPressure;
"reverse";

con_processvar
con_pidaction :

initial ConstraintPeriod

: 4;

initial_ConstraintRangeHigh : 50;
initial ConstraintRangelLow : 10;
initial ConstraintSetPoint : 20;
initial ConstraintDeadBand : 2;

initial_ ConstraintKp :
initial ConstraintKi :
initial ConstraintKd

}
25.4

6,953
0.7;
: 0.05;

Declaration Parameters

Table 25.4-1. DigitalPIDControllerResource object declaration parameters

Parameter Type Code Description
o A user-provided string describing the
description <str256> L. .
DigitalPIDControllerResource object
Bit encoded flags which control the permissions
webcontrolflags uint . .
to modify properties on the web interface
RegisterInput | Selected RegisterInputResource object for
processvar .
Resource process variable
PID controller type
pidtype <option> Allowable values: “simplepid” |
“constraintovrpid”
PID action
pidaction <option> .
Allowable values: “direct” | “reverse”
RegisterInput | Selected RegisterInputResource object for
con_processvar .
Resource constraint source
PID action for constraint controller
con_pidaction <option> .
Allowable values: “direct” | “reverse”
Initial state of the controller, Indicates true if the
initial_TIsAutoMode bool o
controller is in auto
initial_Period uint Initial execution period of the controller
initial_RangeHigh float Initial process Variable high range
initial Rangelow float Initial process Variable low range

95

Part Il

Scanner Logic Programmer

Parameter Type Code Description
initial_SetPoint float Initial point value set used in Auto mode
Initial set point tolerance value used in Auto
initial_SetPointTolerance float mode. The controller will stop adjusting if Error
< SetPointTolerance
Initial set point dead band value used in Auto
initial_ SetPointDeadBand float mode. The controller will begin adjusting if Error
>= SetPointDeadBand
The initial Override Value (Fraction) used in
initial OverrideValue float
Manual Mode
The initial Fail Value (Fraction) used if ProcessVar
initial FailValue float o .
- is in a fail state
initial Kp float Initial proportional gain factor
initial Ki float Initial integral gain factor
initial Kd float Initial differential gain factor
Initial execution period of constraint override
initial_ConstraintPeriod uint
- controller
initial_ConstraintRangedHigh float Initial constraint Variable high range
initial_ConstraintRangelow float Initial constraint Variable low range
Initial point value set in Constraint Override
initial_ConstraintSetPoint float
Mode
Initial Dead Band level for Constraint Override
initial_ConstraintDeadBand float .
Set Point
initial_ConstraintKp float Initial constraint controller proportional gain
initial_Constraintki float Initial constraint controller integral gain
initial Constraintkd float Initial constraint controller differential gain

96

Scanner Logic Programmer Part Il

25.5 Properties

Table 25.5-1. DigitalPIDControllerResource object properties

Data I
Property Access Description
Type
Output float RO The normalized output of the controller
[default]
IsAutoMode * bool RO Indicates true if the controller is in auto
Active execution period of the controller in
Period * uint RO
seconds
RangeHigh * float RO Process Variable high range
RangelLow * float RO Process Variable low range
SetPoint * float R/W Set Point value used in Auto mode

Set point tolerance value used in Auto mode. The
SetPointTolerance * float R/W controller will stop adjusting if Error <
SetPointTolerance

Set point dead band value used in Auto mode.
SetPointDeadBand * float R/W The controller will begin adjusting if Error >=
SetPointDeadBand

OverrideValue * float R/W Override Value (Fraction) used in Manual Mode
) Fail Value (Fraction) used if ProcessVar is in a fail
Failvalue * float R/W
state
Kp * float R/W Proportional gain factor
Ki * float R/W Integral gain factor
Kd * float R/W Differential gain factor
)] Actual execution period of constraint override
ConstraintPeriod * uint RO
controller
ConstraintRangedHigh * float RO Constraint variable high range
ConstraintRangelLow * float RO Constraint variable low range
ConstraintSetPoint * float R/W Set point value in constraint override mode
ConstraintDeadBand * float R/W Dead band level for constraint override set point
ConstraintKp * float R/W Constraint controller proportional gain
ConstraintKi * float R/W Constraint controller integral gain

97

Part Il

Scanner Logic Programmer

Data L
Property Access Description
Type
ConstraintKd * float R/W Constraint controller differential gain
Indicates true (1) if the controller is in constraint
IsConstraintOverride bool RO
override

* These properties can be initialized with initial_ * parameters.

25.6 Methods

All methods listed below do not accept parameters nor return values.

Table 25.6-1. DigitalPIDControllerResource object methods

Method Return Type Description
Reset() void Resets the PID controller algorithm
SetAutoMode() void Changes PID controller to auto mode
SetManualMode() void Changes PID controller to manual mode
Reloads the initial values of properties specified in
ReloadInit() void .
the declaration
25.7 Usage

Two sample scripts demonstrate how to setup and use
DigitalPIDControllerResource objects as Simple and Constraint Override PID

controllers.

25.7.1 Simple PID

Example File: UsingDigitalPIDs_simple.slogic

The SimplePID_Task sets up a simple PID for controlling Gas Flow Rate on Flow Run 1.
The task starts in the ManualMode state where the flow value is shut. In the
AutoMode state, the PID controller is set to maintain the flow rate at its setpoint. A5
second input on PIDModeSwitch will change between the two modes.

Example 25.7-1. DigitalPIDControllerResource object usage as a simple PID

resource digitalinputs

{

01: SimplePIDModeSwitch { ... }

}

resource registerinputs

{

01: FlowRunl_GasVolumeFlowRate { ... }

98

Scanner Logic Programmer

Part Il

}

resource digitalpidcontrollers
{
01: SimpleDigitalPID
{

description :
webcontrolflags :
processvar : FlowRunl_GasVolumeFlowRate;
pidtype : "simplepid";
pidaction : "reverse";
initial IsAutoMode : false;
initial_Period : 1;
initial_ RangeHigh : 150;
initial_Rangelow : 50;
initial SetPoint : 100;
initial SetPointTolerance : 1;
initial_SetPointDeadBand : 1.2;
initial_OverrideValue : 0.7;
initial FailValue : 0.5;
initial Kp : 0.9;
initial Ki : 0.7;
initial Kd : 0.15;

0x0000;

}

task SimplePID Task
{

initial state ManualMode

{

onEnter

{
SimpleDigitalPID.OverrideValue = 0.0;
SimpleDigitalPID.SetManualMode();

}

onLoop

{
}

onExit { }
}

if (SimplePIDModeSwitch.ActiveTime > 5)

state AutoMode
{

onEnter

{
SimpleDigitalPID.SetPoint = 125;

SimpleDigitalPID.SetAutoMode();
}

onLoop

{
if (SimplePIDModeSwitch.ActiveTime > 5)

changestate AutoMode;

changestate ManualMode;

"A simple digital PID for controlling Gas Flow Rate (m3/hr)";

99

Part Il Scanner Logic Programmer

}

onExit { }

}
25.7.2 Constraint Override PID

Example File: UsingDigitalPIDs_constraintovr.slogic

The PressureOverridePID Task sets up a PID for controlling Gas Flow Rate on Flow
Run 1 with a constraint override controller. The task starts in the ManualMode state
where the flow value is shut. In the AutoMode state, the PID controller is set to
maintain the flow rate at its setpoint. Both states will transition to a HighPressure
state where additional handling can be performed if the controller goes into
constraint override. A 5-second input on ConstraintovrpidModeSwitch will change
between the two modes.

Example 25.7-2. DigitalPIDControllerResource object usage as a PID with a constraint override
controller

resource digitalinputs

{
01: ConstraintovrpidModeSwitch { ... }
¥
resource registerinputs
{
01: FlowRunl_GasVolumeFlowRate { ... }
02: AnalogIn_StaticPressure { ... }
¥

resource digitalpidcontrollers

{

01: DigitalPID_PressureOverride
{
description : "A digital PID with a constraint override ...";
webcontrolflags : 0x0000;
processvar : FlowRunl_GasVolumeFlowRate;
pidtype : "constraintovrpid";
pidaction : "reverse";
initial_TIsAutoMode : false;
initial_Period : 1;
initial RangeHigh : 150;
initial RangelLow : 50;
initial_SetPoint : 100;
initial_SetPointTolerance : 1;
initial SetPointDeadBand : 1.2;
initial OverrideValue : 0.7;
initial FailValue : 0.5;
initial Kp : ©.9;
initial Ki : 0.7,
initial Kd : 0.15;

100

Scanner Logic Programmer Part Il

con_processvar : AnalogIn_StaticPressure;
con_pidaction : "reverse";

initial ConstraintPeriod : 4;
initial_ConstraintRangeHigh : 50;
initial_ConstraintRangelow : 10;

initial ConstraintSetPoint : 20;

initial ConstraintDeadBand : 2;

initial ConstraintKp : ©.95;
initial_ConstraintkKi : 0.7;
initial_Constraintkd : ©.05;

}
}
task PressureOverridePID_Task
{
initial state ManualMode
{
onEnter
{
DigitalPID PressureOverride.ConstraintSetPoint = 30;
DigitalPID_PressureOverride.OverrideValue = 0.0;
DigitalPID_PressureOverride.SetManualMode();
}
onLoop
{
if (DigitalPID_PressureOverride.IsConstraintOverride)
changestate HighPressure;
if (ConstraintovrpidModeSwitch.ActiveTime > 5) changestate AutoMode;
}
onExit { }
}
state AutoMode
{
onEnter
{
DigitalPID_PressureOverride.ConstraintSetPoint = 125;
DigitalPID_PressureOverride.SetAutoMode();
}
onLoop
{
if (DigitalPID_PressureOverride.IsConstraintOverride)
changestate HighPressure;
if (ConstraintovrpidModeSwitch.ActiveTime > 5) changestate ManualMode;
}
onExit { }
}

101

Part Il Scanner Logic Programmer

state HighPressure

{

}
}

102

Scanner Logic Programmer Part Il

26 Digital Output Resource Object

26.1

26.2

General Description

DigitalOutputResource objects are output resources that can interface to Scanner
hardware digital outputs. If declared, each DigitalOutputResource object
corresponds directly to the physical DIO port with the matching index number in the
Scanner. At the end of each script execution cycle, the script interpreter engine
publishes the DigitalOutputResource output values.

Up to 6 DigitalOutputResource objects that may be declared for use in a Scanner
Logic Script program.

Required S3100 Device Configuration

The Scanner 3100 has 6 physical DIO ports that may be assigned to the declared
DigitalOutputResource objects. The Digital I/O Mode of each DIO port that
corresponds to declared DigitalOutputResource objects will be verified at the
beginning of the program and at the start of each script execution cycle. If the Digital
I/O Mode specified is not “Track Scanner Logic Controller”, the Scanner Logic Script
will encounter a run time error and the failState state will be invoked. Physical DIO
ports are configured by default as “Input Mode”.

Note: DigitalInputResource and DigitalOutputResource items both map to the
same set of physical DIO ports and are mutually exclusive functions. A
DigitalInputResource object and DigitalOutputResource object defined at the
same index will generate a run time error and the failState state will be invoked.

Table 26.2-1. DigitalOutputResource object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement

Digital In/Out Digital I/0O Mode Track Scanner Logic Controller

26.3

Declaring DigitalOutputResource Objects

The DigitalOutputResource declaration group begins with the keywords resource
digitaloutputs, and contains a resource item declaration for each
DigitalOutputResource object to be used in the program within a pair of open and
close braces. Each resource item declaration consists of a unique resource index
number between 01 and @6 and a user defined identifier separated by a colon, and
contains a list of parameter assignment statements within a pair of open and close
braces.

103

Part Il Scanner Logic Programmer

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : o, float : 8.9, bool
: false). Unused resource items may be omitted from the resource declaration
group. If noDigitalOutputResource items are required, the entire declaration
group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 26.3-1. DigitalOutputResource object declaration example

resource digitaloutputs

{

01: FlowValve

{
description: "Flow Valve actuated when Output is on";
initial TIsActive: false;
initial_FollowAlarm: 0;
initial Period: 2;
initial Duration: ©;

}

©2: Burner

{
description: "Switch that activates the burners";
initial IsActive: true;
initial_FollowAlarm: O;
initial Period: 50;
initial Duration: 1;

}

06: PressureReleaseValue

{
description: "Vents line on high pressure alarm";
initial TIsActive: false;
initial FollowAlarm: 18;
initial Period: 2;
initial Duration: ©;

}

}

26.4 Declaration Parameters

Table 26.4-1. DigitalOutputResource object declaration parameters

Parameter Type Code Description

A user-provided string describing the purpose of the
description <str256>

DigitalOutputResource object

104

Scanner Logic Programmer

Part Il

Parameter Type Code Description

In the initial state of the device, indicates if the digital

initial_IsActive bool output is currently in the asserted state. Only applies to
outputs not programed to follow an alarm.
Initial Follow Alarm configuration setting. Control output

initial FollowAlarm uint state with Alarm IsActive state: 0O=Manual, 1=Alarm1, ...,
32=Alarm32
Initial Period configuration setting. Pulse out period in
initial_Period uint)
- number of 10ms ticks

Initial Duration configuration setting. Pulse out active time

initial_Duration uint

in number of 10ms ticks

26.5 Properties

Table 26.5-1. DigitalOutputResource object properties

Property Data Type | Access Description

Indicates if the digital output is currently in the

IsActive * asserted state. If pulsing mode activated with
bool RO S s

[default] AddPulseAccum() method, output will indicate

IsActive =0.

Control output state with Alarm IsAsserted state:

FollowAlarm * uint R/W

0=Manual, 1=Alarm1, ..., 32= Alarm32
Period * uint R/W Pulse out period in number of 10ms ticks

Pulse out active time in number of 10ms ticks. A

zero pulse duration will produce a continuous pulse
Duration * uint R/W .))

of width equal to the integer portion of the pulse

accumulator time 10mes.

Number of consecutive seconds IsActive has been
ActiveTime uint RO

true

Number of consecutive seconds IsActive has been

InactiveTime uint RO

false

Incremental accumulation value to be added to

accumulator with the AddPulseAccumulation()
PulselLoad uint R/W

method. Fractional values can be loaded into the
pulse accumulator.

* These properties can be initialized with initial_* parameters.

105

Part Il Scanner Logic Programmer

26.6 Methods

All methods listed below do not accept parameters nor return values.

Table 26.6-1. DigitalOutputResource object methods

Method Return Type Description

Assert the DigitalOutputResource object to the
Not-Normal state. Clears internal pulsing

Activate() void)
accumulator. Only applies to outputs not

programmed to follow an alarm.

Deassert the DigitalOutputResource object and
sets the Normal state. Clears internal pulsing

Deactivate() void i
accumulator. Only applies to outputs not

programmed to follow an alarm.

Clears the internal pulsing accumulator and resets
ClearPulseAccum() void the output to the not active state. Only applies to
outputs not programmed to follow an alarm.

Loads any positive accumulation value in the
Pulseload property into the internal pulse
accumulator. Any integer portion of the result
AddPulseAccum() void . . .
within the accumulator will be translated into
pulses. Only applies to outputs not programmed

to follow an alarm.

Reloads the init values for IsActive,
ReloadInit() void . .
FollowAlarm, Period, and Duration

106

Scanner Logic Programmer Part Il

26.7 Usage

Example File: UsingDigitalOutputs.slogic

A DigitalOutputResource object can be used to activate a flow valve when a signal
from a high pressure switch is received.

Example 26.7-1. DigitalOutputResource object usage example

resource digitaloutputs

{
01: FlowValve
{
description: "Flow Valve actuated when Output is on";
initial IsActive: false;
initial FollowAlarm: ©;
initial_Period: 2;
initial Duration: 0;
}
¥
resource digitalinputs
{
01: HighPressureSwitch { ... }
¥
task Taskl
{
state ControlFlowValve
{
onEnter { FlowValve.Deactivate(); }
onLoop
{
if (HighPressureSwitch.IsActive) { changestate HighPRessureState; }
}
onExit { FlowValve.Activate(); }
}
state HighPressureState
{
}
}

107

Part Il Scanner Logic Programmer

27 Alarm Resource Object

27.1 General Description

AlarmResource objects are output resources that can interface with the Scanner
host environment.

AlarmResource objects exist within the Scanner Logic Script program environment.
They are separate and independent from the Device Alarms implemented in the
Scanner host environment.

At the end of each script execution cycle, the script interpreter engine publishes
output of the AlarmResource objects. AlarmResource states are viewable in the
Scanner Logic Script status page of the web interface. Additionally, Scanner Logic
Script AlarmResource registers will be available to the Scanner host environment for
logging, triggering Device Alarms, or activating Digital Outputs, etc. Setting an
AlarmResource object active and inactive causes a record to be created in the
Scanner alarm archive.

Up to 32 AlarmResource objects may be declared for use in a Scanner Logic Script
program.

27.2 Required S3100 Device Configuration

There are no device configuration requirements for AlarmResource objects.

27.3 Declaring AlarmResource Objects

The AlarmResource declaration group begins with the keywords resource alarms,
and contains a resource item declaration for each AlarmResource object to be used
in the program within a pair of open and close braces. Each resource item
declaration consists of a unique resource index number between @1 and 32 and a user
defined identifier separated by a colon, and contains a list of parameter assignment
statements within a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : o, float : 8.0, bool
: false). Unused resource items may be omitted from the resource declaration
group. If no AlarmResource items are required, the entire declaration group may be
omitted.

Parser errors will be generated for improper or incomplete declarations.

108

Scanner Logic Programmer Part Il

Example 27.3-1. AlarmResource object declaration example

resource alarms

{

01: GasSupplyAlarm

{
description: "Alarm to indicates gas supply is low";
initial_HoldOffDelay: ©;
initial IsAsserted: false;

}

02: HighPressureAlarm

{
description: "Signaled for excessive pipe pressures”;
initial HoldOffDelay: ©;
initial IsAsserted: false;

}

32: HeaterFailure

{
description: "Heater inactive for 10 or more minutes";
initial HoldOffDelay: 609;
initial IsAsserted: false;

}

}

27.4 Declaration Parameters

Table 27.4-1. AlarmResource object declaration parameters

Parameter Type Code Description
A user-provided string describing the AlarmResource
description <str256>)
object
The initial state of the alarm, set upon program start or
initial_TIsAsserted bool) . .
- after invoking the ReloadInit () method
The initial value for the HoldoffDelay, set upon program
initial_HoldOffDelay uint)) .
- start or after invoking the ReloadInit() method

109

Part Il Scanner Logic Programmer

27.5 Properties

Table 27.5-1. AlarmResource object properties

Property Data Type | Access Description
IsActive State of the alarm determined by IsAsserted &&
bool RO
[default] (HoldoffCount == HoldoffDelay)
State set by the Assert() and Deassert()
IsAsserted * bool RO
methods
The configured hold-off delay in seconds before
HoldOffDelay * uint R/W .
the alarm becomes active
HoldOffTime uint RO The current seconds timer of the hold-off delay
Number of consecutive seconds IsActive has
ActiveTime uint RO
been true
Number of consecutive seconds IsActive has
InactiveTime uint RO
been false

* These properties can be initialized with initial_* parameters.

27.6 Methods

All methods listed below do not accept parameters nor return values.

Table 27.6-1. AlarmResource object methods

Method Return Type Description

Assert the alarms object. If the alarm is not
already active, it will become active at the

Assert() void L .
beginning of the next execution cycle or when the

HoldoffDelay has elapsed.

Deassert the alarms object. If the alarm is not
Deassert() void already not active, IsActive will become false at
the beginning of the next execution cycle.

Reloads the init values for IsActive,
ReloadInit() void . .
FollowAlarm, Period, and Duration

110

Scanner Logic Programmer Part Il

27.7 Usage

Example File: UsingAlarms.slogic

In this example, the program waits in an onLoop block until a digital input connected
to a high-pressure switch is activated. This triggers a changestate and asserts an
alarm during the onExit execution.

Example 27.7-1. AlarmResource object usage example

resource alarms

{
01: HighPressureAlarm
{
description: "Alarm to indicate high pressure threshold";
initial IsAsserted: false;
initial HoldOffDelay: 4;
}
}
resource digitalinputs
{
01: HighPressureSwitch { ... }
}
task Taskl
{
initial state ControlFlowValve
{
onEnter { HighPressureAlarm.Deassert(); }
onLoop
{
if (HighPressureSwitch.IsActive) { changestate HighPressureState; }
}
onExit
{
HighPressureAlarm.Assert();
}
}
state HighPressureState
{
}
}

111

Part Il

Scanner Logic Programmer

28 Timer Resource Object

28.1

28.2

28.3

General Description

TimerResource objects are a system resource of the Scanner Logic Script program
environment. TimerResource objects increment their count by 1 at the start of each
program execution cycle if they are actively running.

Up to 8 TimerResource objects may be declared for use in a Scanner Logic Script
program.

These user-defined timers are general purpose. Note that many of the resource
objects have their own integrated timers that automatically measure and count
useful periods (e.g. DigitalInputResource.ActiveTime, State.ActiveTime,
State.TotalEntryCount).

Required S3100 Device Configuration

There are no device configuration requirements for TimerResource objects.

Declaring TimerResource Objects

The TimerResource declaration group begins with the keywords resource timers,
and contains a resource item declaration for each TimerResource object to be used
in the program within a pair of open and close braces. Each resource item
declaration consists of a unique resource index number between 01 and @8 and a user
defined identifier separated by a colon, and contains a list of parameter assignment
statements within a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : @, float : 8.0, bool
: false). Unused resource items may be omitted from the resource declaration
group. If no TimerResource items are required, the entire resource declaration
group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 28.3-1. TimerResource object declaration example

resource timers

{

01: TotalProductionTime

{

description: "Total time spent in production state";
initial_Time: ©;
initial IsActive: false;

112

Scanner Logic Programmer Part Il

}

02: WellTestTimer

{
description: "Time spent in all Well Test states"”;
initial Time: ©;
initial IsActive: false;

}

08: SLOGICTotalOperationTime
description: "Alarm to indicate high pressure threshold";
initial Time: ©;
initial IsActive: true;

}
28.4 Declaration Parameters

Table 28.4-1. TimerResource object declaration parameters

Parameter Type Code Description
description <str256> A user-provided string describing the TimerResource object
The initial number of seconds (the number of program
initial Time uint . . .
- execution cycles) since the timer was started
The initial state of the timer where active is running.
initial IsActive bool IsActive state is programmed by the Start() and Stop()

methods after initialization.

28.5 Properties

Table 28.5-1. TimerResource object properties

Property Data Type | Access Description
Time it R/ The number of seconds (the number of program
[default] un execution cycles) since the timer was started

Indicates if the timer is active running or stopped (as
programed by the Start and Stop methods).

IsActive * bool RO

* These properties can be initialized with initial_* parameters.

113

Part Il Scanner Logic Programmer

28.6 Methods

All methods listed below do not accept parameters nor return values.

Table 28.6-1. TimerResource object methods

Method Return Type Description
Start the timer running; the Time property will
Start() void . .
increment by 1 at the start of each execution cycle
Stop the timer; the Time property will contain the
Stop() void . .
number of seconds since the timer was started
Reset the Time property to zero; the timer
Reset() void)
continues to run
StopReset() void Stop the timer and reset the Time property to zero
ReloadInit() void Reloads the init values for Time
28.7 Usage

Example File: UsingTimers.slogic

In this example, a TimerResource object waits for one minute before triggering a
changestate. The timer is stopped onExit.

Example 28.7-1. TimerResource object usage example

resource timers

{
01: Timerl
{
description: "One minute threshold";
initial_Time: ©;
initial IsActive: false;
}
}
task Taskl
{
state OneMinuteTimer
{
onEnter { Timerl.Start(); }
onLoop
{

if (Timerl.Time >= 60) { changestate State2; }
}

onExit { Timerl.Stop(); }

114

Scanner Logic Programmer Part Il

state State2
{

}
}

115

Part Il Scanner Logic Programmer

29 Logic Script Register Objects

29.1 General Description

A register is a named container in which to store a Value. Some register types allow
values to be passed between the script program and the Scanner host environment.
A register’s name, specified in the register item declaration, follows the rules
described for identifiers (see Chapter 10). All registers have a Value property of type
float that can be read and written. Assignment statements can assign values to
registers either by using the Value property or by using the name of the register
alone, since Value is the default property of registers.

Input values are obtained via ConfigurationRegister objects (see Chapter 30) and
MaintenanceRegister objects (see Chapter 31). The Scanner 3100 maintains the
values of the Configuration Registers and Maintenance Registers in nonvolatile
memory, since they are user configuration values. Their values will persist throughout
power cycling of the device or restarting the Scanner Logic Script program after
entering the abortState or the failState.

Output values are stored in HoldingRegister objects (see Chapter 32) or
AccumulationRegister objects (see Chapter 33). These output register values are
accessible by the Scanner host environment. The values are not stored in nonvolatile
memory like the Configuration Registers and Maintenance Registers, and will lose
their values if the program is restarted.

The Accumulation Registers are like the Holding Registers, but they store totals of
incremental accumulations that have been added to them rather than a single value
at a time. The Scanner 3100 maintains current period and previous period totals for
the values in Accumulation Registers.

There are no user-defined variables in Scanner Logic Script. The storage of
intermediate calculation results or temporary values can be accomplished using
WorkingRegister objects (see Chapter 34), which serve the purpose of global
variables. They retain their values as program execution moves between states or in
and out of subroutines.

Example 29.1-1. Using Logic Script Register objects
MyHoldRegNamel = MyConfigRegNamel + Math.Sin(MyWorkRegNamel);

if (MyMaintRegNamel >= MyMaintRegName2)

116

Scanner Logic Programmer Part Il

29.2

Scanner Logic Script registers always hold values as a float type. The type of a
register cannot be changed during script program execution. You cannot assign
values to a register that do not match the type defined for the register Value
property.

Each register must be assigned to a specific register number (01, 02, 03, ...). This
number is used for identifying the registers in Scanner systems that are not aware of
the user defined name. For example, when accessing configuration registers via a
serial protocol, they will have a default label within the protocol map as
m32_LM_CREG_1_Config RN (where N is the register number). Similarly, changes to the
configuration registers are captured by the Scanner in the User Event Archive and
will be identified in the m32_LM_CREG_1_Config_RN format.

When defining registers, register group labels can be created and assigned to each
register. Register group labels allow the user to organize registers into functional
groups to help guide the Web Interface operator when configuring and maintaining
the active Scanner Logic Script program. On the Web Interface register pages,
register group labels will be sorted alphabetically and displayed with all registers to
which they have been assigned. Quick access links at the top of the Web Interface
page will allow for convenient navigation to a register group.

The Web Interface provides a SCANNER LOGIC SCRIPT PROGRAM REPORT on the Logic
Controller Status page. This report summarizes the resources defined by the Logic
Script program and tabulates register numbers with user defined names and
descriptions for reference.

Register Object Types

Table 29.2-1. Types of register objects

Register Type Usage | Qty Description

ConfigurationRegister Input 32

Editable on web interface Configuration registers page.
Security access level > Configuration Editor.

MaintenanceRegister Input 32

Editable on web interface Maintenance registers page.
Security access level > Calibration Tech.

HoldingRegister Output 64

Viewable on web interface Holding registers page.

Publish register to Scanner systems (archive, display, input
source, etc).

117

Part Il

Scanner Logic Programmer

Register Type Usage | Qty Description
Viewable on web interface Accumulation registers page.
Publish register to Scanner systems (archive, display, input
source, etc).
AccumulationRegister Output 16
Periodic data.
64 bit precision.
WorkingRegister Internal | 64 | Logic Script global variables.

118

Scanner Logic Programmer Part Il

30 Configuration Register Object

30.1

30.2

General Description

ConfigurationRegister objects are used to allow user input into the Scanner Logic
Script program at run time. These registers will appear in a Configuration Registers
webpage in the Logic Controller section of the web interface to allow users to view
and change the ConfigurationRegister values. The Configuration Registers
webpage is accessible by users with Configuration Editor access and higher. User
changes to ConfigurationRegister values are available to the program at the
moment the changes are saved.

The register declaration for this register type allows the specification of a
measurement units category, unit type, and rate. The selection of the measurement
units category will determine the set of valid selections for unit type and rate scalar.
The script execution engine will convert the values between the device system units
and the specified units within the Scanner Logic Script program as required.

Up to 32 ConfigurationRegister objects may be declared for use in a Scanner
Logic Script program.

Each ConfigurationRegister must be assigned to a specific register number (01 —
32). When accessing these registers through Scanner systems that are unaware of
the user defined name (e.g. serial protocol, User Event Archive), these registers are
identified using their defined number with the format m32_LM_CREG_1_Config RN
(where N is the register number).

Each ConfigurationRegister may also optionally be assigned a register group
label. Register group labels allow the user to organize registers into functional groups
to help guide the Web Interface operator when configuring and maintaining the
active Scanner Logic Script program.

Declaring ConfigurationRegister Objects

The ConfigurationRegister declaration group begins with the keywords
registers configuration, and contains a registers item declaration for each
ConfigurationRegister to be used in the program within a pair of open and close
braces. Each registers item declaration consists of a unique register index number
between 01 and 32 and a user defined identifier separated by a colon, and contains a
list of parameter assignment statements within a pair of open and close braces.

119

Part Il

Scanner Logic Programmer

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.0, bool
: false). Unused registers items may be omitted from the registers declaration
group. Omitting the group parameter will place the register into the “Ungrouped”
register group label. If no ConfigurationRegister items are required, the entire
declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 30.2-1. ConfigurationRegister object declaration example

regist
{
o1:
{

ers configuration
TubingConstant

group: “Station Parameters”;

description: "A unitless constant used in calculating pressure test value";
category: "No Units";

units: "";

initial Value: 0;

: GasSupplyMin

group: “Station Parameters”;

description: "Minimum level for gas supply pressure before alarm is asserted";
category: "Static Pressure (gauge)";

units: "psig";

initial_Value: 0;

LiquidFlowRateMinimum

group: “Alarm Settings”;

description: "Threshold flow rate (m3/hr) for entering LowFlowState";
category: "Liquid Volume";

units: "m3";

rate: "/hr";

initial Value: 25;

120

Scanner Logic Programmer Part Il

30.3 Declaration Parameters

Table 30.3-1. ConfigurationRegister object declaration parameters

Parameter Type Code Description
A user-provided string label that will be used to group
group <stréd> . .
related registers in the Web Interface.
A user-provided string describing the configuration register
description <str256>)
object
The units category of the S3100 configuration register. See
category <category> Measurement Categories section. See Chapter 51 for more
information.
Numerator of the measurement unit desired for the
configuration value, and denominator if required for the
units <unit> specified measurement units category. Must be specified if
category is not None. See Chapter 51 for more
information.
Rate scalar unit desired for the configuration value. See
rate <rate>) .
Chapter 51 for more information.
initial_Value float Initial value of the configuration register object

30.4 Properties

Table 30.4-1. ConfigurationRegister object properties

Property Data Type | Access Description

Holds the value of the configuration register object;

since this is the default property of the object, this
Value *

[default] float R/W property name can be omitted when referencing the

object, and the compiler will automatically use the

Value property

* These properties can be initialized with initial_* parameters.

121

Part Il Scanner Logic Programmer

30.5 Methods

All methods listed below do not accept parameters nor return values.

Table 30.5-1. ConfigurationRegister object methods

Method Return Type Description
ReloadInit() void Reloads the initial value for Value
30.6 Usage

Configuration Registers are ideal for programing operational parameters that vary at
each installation. Using these registers will often avoid having to alter the program,
recompile, and upload the program to the Scanner.

Example File: UsingConfigurationRegisters.slogic

In this example, the program is waiting for a pressure drop to trigger a changestate.
The pressure live reading is received from Analog Input 1 and the configuration
register allows a user with an access level of Configuration Editor or greater to
designate the desired threshold pressure.

Example 30.6-1. ConfigurationRegister object usage example

registers configuration

{
01: PressureThreshold
{
group: “Station Parameters”;
description: "This is a pressure threshold variable";
category: "Static Pressure (gauge)";
units: "psig";
initial_Value: 100.0;
}
}
resource registerinputs
{
01: RealTimePressure { ... }
}
task Taskl
{
state WaitForPressureDrop
{
onEnter {}
onLoop
{

122

Scanner Logic Programmer Part Il

if (RealTimePressure < PressureThreshold)

{
changestate HandlePressureDrop;
}
}
onExit {}
}
state HandlePressureDrop
{
}

123

Part Il Scanner Logic Programmer

31 Maintenance Register Object

31.1 General Description

MaintenanceRegister objects are used to allow user input into the Scanner Logic
program at run time. These registers will appear in a Maintenance Registers webpage
in the Logic Controller section of the web interface to allow users to view and change
the MaintenanceRegister values. The Maintenance Registers webpage is accessible
by users with Calibration Tech access and higher. User changes to
MaintenanceRegister values are available to the program at the moment the
changes are saved.

The register declaration for this register type allows the specification of a
measurement units category, unit type, and rate. The selection of the measurement
units category will determine the set of valid selections for unit type and rate scalar.
The script execution engine will convert the values between the device system units
and the specified units within the Scanner Logic Script program as required.

Up to 32 MaintenanceRegister objects may be declared for use in a Scanner Logic
Script program.

Each register must be assigned to a specific register number (01 —32). When
accessing these registers through Scanner systems that are unaware of the user
defined name (e.g. serial protocol, User Event Archive), these registers are identified
using their defined number with the format m32_LM_MREG_1_Config RN (where N is
the register number).

Each MaintenanceRegister may also optionally be assigned a register group label.
Register group labels allow the user to organize registers into functional groups to
help guide the Web Interface operator when configuring and maintaining the active
Scanner Logic Script program.

31.2 Declaring MaintenanceRegister Objects

The MaintenanceRegister declaration group begins with the keywords registers
maintenance, and contains a registers item declaration for each
MaintenanceRegister to be used in the program within a pair of open and close
braces. Each registers item declaration consists of a unique register index number
between 01 and 32 and a user defined identifier separated by a colon, and contains a
list of parameter assignment statements within a pair of open and close braces.

124

Scanner Logic Programmer Part Il

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.0, bool
: false). Unused registers items may be omitted from the registers declaration
group. Omitting the group parameter will place the register into the “Ungrouped”
register group label. If no MaintenanceRegister items are required, the entire
declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 31.2-1. MaintenanceRegister object declaration example

registers maintenance

{

01:

{

ProductionHoldTime

group: “Station Operating Parameters”;
description: "Production hold time (minutes)";
category: "No Units";

units: "";

initial Value: 60;

: PressureThreshold

group: “Station Operating Parameters”;

description: "Threshold for pressure test value for dewatering decision";
category: "Static Pressure (gauge)";

units: "psig";

initial_Value: 100.0;

LiquidFlowRateMinimum

group: “Station Alarm Parameters?”;

description: "Threshold flow rate (m3/hr) for entering LowFlowState";
category: "Liquid Volume";

units: "m3";

rate: "/hr";

initial Value: 25;

125

Part Il Scanner Logic Programmer

31.3 Declaration Parameters

Table 31.3-1. MaintenanceRegister object declaration parameters

Parameter Type Code Description
A user-provided string label that will be used to group
group <stréd>))
related registers in the Web Interface.
A user-provided string describing the maintenance
description <str256> . .
register object
The unit category of the S3100 maintenance register.
category <category> See Measurement Categories. See Chapter 51 for more
information.
Numerator of the measurement unit desired for the
maintenance value, and denominator if required for the
units <unit> specified measurement units category. Must be
specified if category is not None. See Chapter 51 for
more information.
Rate scalar unit desired for the maintenance value. See
rate <rate> .)
Chapter 51 for more information.
initial_Value float Initial value of the maintenance register object

31.4 Properties

Table 31.4-1. MaintenanceRegister object properties

Property Data Type | Access Description

Holds the value of the maintenance register object;
since this is the default property of the object, this

*
Value float R/W property name can be omitted when referencing the

[default]
object, and the compiler will automatically use the

Value property

* These properties can be initialized with initial_* parameters.

126

Scanner Logic Programmer Part Il

31.5 Methods
Table 31.5-1. MaintenanceRegister object methods
Method Return Type Description
ReloadInit() void Reloads the init value for Value
31.6 Usage

Maintenance Registers are ideal for programing operational parameters that require
adjustments over time as conditions of an installation change. Using these registers
will often avoid having to alter the program, recompile, and upload the program to
the Scanner.

Example File: UsingMaintenanceRegisters.slogic

In this example, a technician with Calibration Tech access level may set a desired
production hold off timer and pressure threshold using two separate
MaintenanceRegister items. A dewatering process is triggered when the
ProductionTimer exceeds the user set ProductionHoldTime and the
CasingPressure is above the PressureThreshold.

Example 31.6-1. MaintenanceRegister object usage example

registers maintenance

{

}

01: ProductionHoldTime

{

group: “Station Operating Parameters”;
description: "Production hold time (minutes)";
category: "No Units";

initial_Value: 60;

: PressureThreshold

group: “Station Operating Parameters”;

description: "This is a pressure threshold variable";
category: "Static Pressure (gauge)";

units: "psig";

initial Value: 100.0;

resource registerinputs

{
}

01: CasingPressure { ... }

resource timers

{

127

Part Il Scanner Logic Programmer
01: ProductionTimer { ... }
}
task Taskl
{
state NormalProduction
{
onEnter { ProductionTimer.Start(); }
onLoop
{
if (ProductionTimer / 60 > ProductionHoldTime)
{
if (CasingPressure > PressureThreshold)
{
changestate Dewatering;
}
}
}
onExit { ProductionTimer.StopReset(); }
}
state Dewatering
{
}

128

Scanner Logic Programmer Part Il

32 Holding Register Object

32.1

General Description

HoldingRegister objects are used to allow a Scanner Logic program to create
values usable by Scanner systems at run time.

The register declaration for this register type allows the specification of a
measurement units category, unit type, and rate. The selection for the measurement
units category will determine the set of valid selections for unit type and rate scalar.
The script execution engine will convert the values between the device system units
and the specified units within the Scanner Logic Script program as required.

Holding Registers publish their values to the Scanner host environment at the end of
each script execution cycle for use in archiving, displaying on the LCD, as inputs for
Flow Runs and Calculators, and driving Analog and Digital outputs. The selection of a
HoldingRegister object’s measurement units category will determine how the
HoldingRegister value can be used by the Scanner. For example, a Flow Run
pressure source will only allow the selection of holding registers that are a category
of Static Pressure (gauge) or Static Pressure (absolute).

These registers will appear in a Holding Registers webpage in the Logic Controller
section of the web interface to allow users to view the HoldingRegister values. The
Holding Registers webpage is accessible by all users with valid access.

Up to 64 HoldingRegister objects may be declared for use in a Scanner Logic Script
program.

Each register must be assigned to a specific register number (01 — 64). When
accessing these registers through Scanner systems that are unaware of the user
defined name (e.g. serial protocol, User Event Archive), these registers are identified
using their defined number with the format m32_LM_HREG_1_Config RN (where N is
the register number).

Each HoldingRegister may also optionally be assigned a register group label.
Register group labels allow the user to organize registers into functional groups to
help guide the Web Interface operator when configuring and maintaining the active
Scanner Logic Script program.

129

Part Il

Scanner Logic Programmer

32.2

Declaring HoldingRegister Objects

The HoldingRegister declaration group begins with the keywords registers
holding, and contains a registers item declaration for each holding register to be
used in the program within a pair of open and close braces. Each registers item
declaration consists of a unique register index number between @1 and 64 and a user
defined identifier separated by a colon, and contains a list of parameter assignment
statements within a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : o, float : 8.0, bool
: false). Unused registers items may be omitted from the registers declaration
group. Omitting the group parameter will place the register into the “Ungrouped”
register group label. If no HoldingRegister items are required, the entire registers
declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 32.2-1. HoldingRegister object declaration example

regist
{
01:
{

ers holding
ProductionHoldCount

group: “Station Operating Values?”;

description: "Production hold time count (minutes)";
category: "No Units";

units: "";

initial_Value: 60;

: MaximumPressure

group: “Station Operating Values?”;
description: "The maximum pressure observed.";
category: "Static Pressure (gauge)";

units: "psig";

initial_Value: 100.0;

: LiquidFlowRateMinimum

group: “Station Alarm Values”;

description: "Minimum flow rate (m3/hr) while in LowFlowState";
category: "Liquid Volume";

units: "m3";

rate: "/hr";

initial_Value: 25;

130

Scanner Logic Programmer Part Il

32.3 Declaration Parameters

Table 32.3-1. HoldingRegister object declaration parameters

Parameter Type Code Description
A user-provided string label that will be used to group
group <stréd> . .
related registers in the Web Interface.
A user-provided string describing the holding register
description <str256>)
object
. . The unit category of the S3100 holding register. See
categor <category>
gory sory Section 51.2. See Chapter 51 for more information.
Numerator of the measurement unit desired for the
holding value, and denominator if required for the
units <unit> specified measurement units category. If category is
anything other than “None, the value must be specified.
See Chapter 51 for more information.
Rate scalar unit desired for the holding value. See Chapter
rate <rate> . .
51 for more information.
initial Value float Initial value of the holding register object.

32.4 Properties

Table 32.4-1. HoldingRegister object properties

Property Data Type | Access Description

Holds the value of the holding register object; since
this is the default property of the object, this property
float R/W name can be omitted when referencing the object,
and the compiler will automatically use the Value

Value *
[default]

property

* These properties can be initialized with initial_* parameters.

131

Part Il Scanner Logic Programmer

32.5 Methods

Table 32.5-1. HoldingRegister object methods

Method Return Type Description
ReloadInit() void Reloads the init value for Value
32.6 Usage

Example File: UsingHoldingRegisters.slogic

This sample script receives flow rate values from two separate
RegisterInputResource items. The initial state calculates the CasingFlowRate and
stores the result into a Holding Register. The calculated CasingFlowRate stored
within the Holding Register is viewable on the Holding Registers webpage on the web
interface by users with any valid access and is available for use by other Scanner
systems outside of the Logic Script program. CasingFlowRate is available for display
on the LCD, inclusion in archives, and use in any Scanner input requiring a Liquid
Volume category.

Example 32.6-1. HoldingRegister object usage example

registers holding

{
01: CasingFlowRate
{
group: “Well Site Operating Values”;
description: "Calculated casing flow rate";
category: "Liquid Volume";
units: "m3";
rate: "/sec";
initial_Value: 0;
}
}
resource registerinputs
{
01: AcutalFlowRate { ... }
02: TubingFlowRate { ... }
}
task Taskl
{
state CalculateCasing
{
onEnter {}
onLoop

132

Scanner Logic Programmer Part Il

{
CasingFlowRate = ActualFlowRate - TubingFlowRate;
changestate NormalProduction;
}
onExit {}
}
state NormalProduction
{
}

133

Part Il Scanner Logic Programmer

33 Accumulation Register Object

33.1 General Description

AccumulationRegister objects allow a Scanner Logic program to accumulate
incremental values into registers that are usable by Scanner systems at run time.
These registers implement a 64-bit internal accumulator and store sets of current
period and previous period values.

The register declaration for this register type allows the specification of a
measurement units category, unit type, and rate. The selection for the measurement
units category will determine the set of valid selections for unit type and rate scalar.
The script execution engine will convert the values between the device system units
and the specified units within the Scanner Logic Script program as required.

Accumulation Registers publish a set of values to the Scanner host environment at
the end of each script execution cycle to other Scanner systems for use in archiving,
displaying on the LCD, as inputs for Flow Runs and Calculators, and driving Analog and
Digital outputs. Each AccumulationRegister will publish a Daily Total, an Interval
Total, and a Triggered Total value for both the current and previous period in addition
to a Grand Total and an Incremental Change. The selection of an
AccumulationRegister object’s measurement units category will determine how
the Accumulation register’s published values can be used by the Scanner. For
example, a Flow Run pulse input source will only allow the selection of Accumulation
Register values that are a category of Uncorrected Gas Volume, Uncorrected Liquid
Volume, or Mass.

These registers will appear in an Accumulation Registers webpage in the Logic
Controller section of the web interface to allow users to view the
AccumulationRegister values. The Accumulation Registers webpage is accessible
by all users with valid access.

Up to 16 AccumulationRegister objects that may be declared for use in a Scanner
Logic Script program.

Each register must be assigned to a specific register number (01 — 16). When
accessing these registers through Scanner systems that are unaware of the user
defined name (e.g. serial protocol, User Event Archive), these registers are identified
using their defined number using the formatting in the following table where N is the
register number.

134

Scanner Logic Programmer

Part Il

Each AccumulationRegister may also optionally be assigned a register group label.
Register group labels allow the user to organize registers into functional groups to
help guide the Web Interface operator when configuring and maintaining the active
Scanner Logic Script program.

Table 33.1-1. AccumulationRegister object published values

: Host Environment
Published Value - Tag Name

Availability
Archive
Display
Alarms

Grand Total m32_LM_AREG_N_GrandTotal

Analog Out

Digital Out

Calculators

Incremental Change Calculators m32_LM_AREG_N_IncrementalChange
Display
Daily Total Alarms m32_LM_AREG_N_DailyTotal
Digital Out
Interval Total Display m32_LM_AREG_N_IntervalTotal
Triggered Total Display m32_LM_AREG_N_TriggeredTotal
Archive
Previous Daily Total Display m32_LM_AREG_N_PreviousDailyTotal
Calculators
Previous Interval Total Display m32_LM_AREG_N_PreviousIntervalTotal
Previous Triggered Total Display m32_LM_AREG_N_PreviousTriggeredTotal

33.2

Declaring AccumulationRegister Objects

The AccumulationRegister declaration group begins with the keywords registers
accumulation, and contains a registers item declaration for each
AccumulationRegister to be used in the program within a pair of open and close
braces. Each registers item declaration consists of a unique register index number
between 01 and 16 and a user defined identifier separated by a colon, and contains a
list of parameter assignment statements within a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.9, bool
: false). Unused registers items may be omitted from the registers declaration
group. Omitting the group parameter will place the register into the “Ungrouped”

135

Part Il

Scanner Logic Programmer

register group label. If no AccumulationRegister items are required, the entire
registers declaration group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 33.2-1. AccumulationRegister object declaration example

regist

{
o1:

{

33.3

ers accumulation
StationTotalMass

group: “Station Totals”;

description: "Accumulated difference in Mass flow between FR1 and FR2";
category: "Mass";

units: "kg";

initial_Value: 0;

: SiteTotalEnergy

group: “Station Totals”;

description: "Accumulated energy across all flow runs";
category: "Energy";

units: "J";

initial Value: 0;

: PumpTestVolume

group: “Test Results Totals”;

description: "Total fluid volume used during pump tests";
category: "Liquid Volume";

units: "m3";

initial_Value: 0;

Declaration Parameters

Table 33.3-1. AccumulationRegister object declaration parameters

Parameter Type Code Description

group <stro4> A user-provided string label that will be used to group
related registers in the Web Interface.

description <str256> A user-provided string describing the accumulation register

object

136

Scanner Logic Programmer

Part Il

Parameter

category

Type Code

<category> The u
Measurement Categories. See Chapter 51 for more

Description

nit category of the S3100 accumulation register. See

information.

units

<unit>

Numerator of the measurement unit desired for the
accumulation value, and denominator if required for the
specified measurement units category. If the category is

anything but “None,” a value must be specified. See

Chapter 51 for more information.

initial_Value

float

nitial value of the accumulation register object.

33.4 Properties

Table 33.4-1. AccumulationRegister object properties

Property

Value *
[default]

LoadAccum

Data Type

float

float

Access

RO

R/W

Description

Holds the value of the accumulation register object;
since this is the default property of the object, this
property name can be omitted when referencing the
object, and the compiler will automatically use the
Value property

Value of the incremental accumulation added to
accumulator with the AddAccumulation() method

* These properties can be initialized with initial_* parameters.

33.5 Methods

Table 33.5-1. AccumulationRegister object methods

Method Return Type Description
ClearAccumulation() void Clears the internal accumulator
Loads the value of incremental accumulation in
AddAccumulation() void the LoadAccum property into the internal
accumulator
ReloadInit() void Reloads the init value for Value

137

Part Il Scanner Logic Programmer

33.6 Usage

Example File: UsingAccumulationRegisters.slogic

This example uses an Accumulation Register (StationTotal) to store the difference
in gas mass flow between FlowRun1 and FlowRun2. When the StationTotal
exceeds 100 kg of accumulated difference in either direction, change to a new state
and handle that condition. The StationTotal Accumulation Register is published for
use in other Scanner systems, and may be setup for display on the LCD, inclusion in
archiving, or used as an input source.

Example 33.6-1. AccumulationRegister object usage example
registers accumulation

{
@1: StationTotalMass
{
group: “Station Totals”;
description: "Difference in Gas Mass between FlowRunl and FlowRun2";
category: "Mass";
units: "kg";
initial Value: 0;
}
}
resource registerinputs
{
01: FlowRunl_GasMass_Incremental
{
tagname: "FR1: HAccum: Gas Mass Incremental Change";
tagcode: "m32_FC_FR_1 HoldingAccum_GasMassIncrementalChange";
category: "Mass";
units: "kg";
}
02: FlowRun2_GasMass_Incremental
{
tagname: "FR2: HAccum: Gas Mass Incremental Change";
tagcode: "m32_FC_FR_2_HoldingAccum_GasMassIncrementalChange";
category: "Mass";
units: "kg";
}
}
task Taskl
{
initial state RecordStationTotals
{
onEnter { StationTotalMass.ClearAccumulation(); }
onLoop
{

StationTotalMass.LoadAccum = FlowRunl_GasMass_Incremental -

138

Scanner Logic Programmer Part Il

FlowRun2_GasMass_Incremental;
StationTotalMass.AddAccumulation();

if (StationTotalMass >= 100 || StationTotalMass <= -100)
changestate HandleAccumulatedDifference;

}
onExit { }
}
state HandleAccumulatedDifference { ... }

139

Part Il

Scanner Logic Programmer

34 Working Register Object

34.1

34.2

General Description

WorkingRegister objects are internal registers to a Scanner Logic program and
provide a means to create temporary value storage which can be used to store
intermediate calculation values or to pass values between areas of code within the
program. Working Registers are accessible by code in all states and subroutines, and
take the place of local variables.

These registers are not available to the Scanner host environment or the web
interface.

Up to 64 WorkingRegister objects that may be declared for use in a Scanner Logic
Script program.

Declaring working registers

The WorkingRegister declaration group begins with the keywords registers
working, and contains a registers item declaration for each WorkingRegister to be
used in the program within a pair of open and close braces. Each registers item
declaration consists of a unique register index number between @1 and 64 and a user
defined identifier separated by a colon, and contains a list of parameter assignment
statements within a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : @, float : 8.0, bool
: false). Unused registers items may be omitted from the registers declaration
group. If noWorkingRegister items are required, the entire registers declaration
group may be omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 34.2-1. WorkingRegister object declaration example

registers working

{

01: PressureTestValue

{

}

description: "Global variable storing the computed pressure test value (psia)";
initial_Value: 0;

02: PumpTestIterations

{

description: "Countdown of pump tests left to run in batch";
initial_Value: 15;

140

Scanner Logic Programmer Part Il

64: PressureTestStdDev
{

description: "Standard deviation for pressure test 10 sample rolling average.";
initial Value: ©;
}
}

34.3 Declaration Parameters

Table 34.3-1. WorkingRegister object declaration parameters

Parameter Type Code Description
A user-provided string describing the working register
description <str256>)
object
initial_Value float Initial value of the working register object
34.4 Properties
Table 34.4-1. WorkingRegister object properties
Property Data Type | Access Description
Holds the value of the working register object; since this
Value * loat R/ is the default property of the object, this property name
[default] oa can be omitted when referencing the object, and the

compiler will automatically use the Value property

* These properties can be initialized with initial_* parameters.

34,5 Methods

Table 34.5-1. WorkingRegister object methods

Method ‘ Return Type ‘ Description
ReloadInit() ‘ void ‘ Reloads the init value for Value
34.6 Usage

Working Registers allow users to create temporary or interim values that the Scanner
Logic Script program can call upon for use in other statements. Used as a scratch pad
register space, the Working Registers can provide simplification and efficiency to a
program. When the result of a complex statement is required in multiple locations
within a program, consider using Working Registers to store the result so that it may
be reused. Since subroutines in the current version of Scanner Logic Script do not

141

Part Il Scanner Logic Programmer

support return values, Working Registers are useful for holding the result of a
calculation performed in a subroutine for use by the code that called the subroutine.

Example File: UsingWorkingRegisters.slogic

In this example, the TankFillVolume is calculated in the onEnter code block and
stored in a Working Register. This value can now be used in other parts of the
program to derive further properties which are stored in Holding Registers for
publishing.

Example 34.6-1. WorkingRegister object usage example

registers working

{
01: TankFillVolume
{
description: "Computed tank volume filled";
initial_Value: 0;
}
}
resource registerinputs
{
01: TankLevel { ... }
}
registers configuration
{
01: TankRadius { ... }
02: TankVolume { ... }
03: FluidDensity {... }
}
registers holding
{
01: TankFillFraction { ... }
02: FluidWeight { ... }
}
task Taskl
{
state CalculateVesselStats
{
onEnter
{
TankFillVolume = Math.PI * Math.Pow(TankRadius,2) * TankLevel;
}
onLoop
{

TankFillFraction = TankFillVolume / TankVolume;

142

Scanner Logic Programmer Part Il

FluidWeight = TankFillVolume * FluidDensity;

changestate PublishStats;
}

onExit {}
}

state PublishStats
{

}

143

Part Il

Scanner Logic Programmer

35 Task Object

35.1

35.2

General Description

The executable code of a Scanner Logic Script program is contained within the state
objects of a task object.

When declaring a task, it must contain at least one complete state. An initial state
must also be declared.

The state machines in each task appear to run in “parallel”. In actuality, the code in
the current state of each task runs in a round robin fashion at each execution cycle,

which occur once per second.

A Scanner Logic Script program must declare one task and may declare up to 4 tasks
in total.

Declaring Tasks

The Task object declaration begins with the keyword task, followed by a user defined
identifier and contains one or more State object declarations within a pair of open
and close braces. One of the states must be declared as the entry point of the task
with the initial keyword.

Parser errors will be generated for improper or incomplete declarations.

Example 35.2-1. Task object declaration example
task MyTaskNamel

{

initial state Statel

{

}

onEnter {}
onLoop {}
onExit {}

state State2

{

}
}

onEnter {}
onLoop {}
onExit {}

144

Scanner Logic Programmer

Part Il

35.3 Properties

Table 35.3-1. Task object properties

Property Data Type | Access Description
Total number of times the state is entered since
TotalEntryCount uint RO
method
CurrentState uint RO The current state index being executed by the task

35.4 Methods

Table 35.4-1. Task object methods

Method Return Type Description
Clears the TotalActiveTime and
ResetTotals() void
TotalEntryCount values
Re-initializes target task on next execution cycle,
RestartExecution() void))
current execution cycle proceeds to completion
35.5 Usage

Example File: UsingTasks.slogic

The sample script contains two tasks each with multiple states. Entering debug mode
and stepping through the program demonstrates the concurrent execution of the

tasks' execution blocks.

Example 35.5-1. Task object usage example

onLoop { changestate StateName2; }

task Taskl
{
initial state StateNamel
{
onEnter { }
onExit { }
3

state StateName2

{
onEnter { }

onLoop { changestate StateName3; }

onExit { }
}

state StateName3

{
onEnter { }

145

Part Il Scanner Logic Programmer

onLoop { changestate StateNamel; }
onExit { }

}

task Task2
{
initial state StateNamel
{
onEnter { }
onLoop { changestate StateName2; }
onExit { }

}

state StateName2

{
onEnter { }
onLoop { changestate StateNamel; }
onExit { }

146

Scanner Logic Programmer Part Il

36 State Object

36.1

36.2

General description

All declared states must contain an onEnter, onLoop and onExit block. One of the
states within each task must be declared as the initial state.

Declaring States

The state object declaration begins with the keyword state, followed by a user
defined identifier and contains one onEnter, one onLoop and one onExit block within
a pair of open and close braces. A state may be declared as the entry point of its
containing task with the initial modifier keyword. The onEnter, and onExit blocks
may be configured to create event records by declaring them with the logged
modifier keyword.

Parser errors will be generated for improper or incomplete declarations.

Example 36.2-1. State object declaration example
state Statel

{
onEnter logged
{
}
onLoop
{
}
onExit logged
{
}
}
36.3 Properties
Table 36.3-1. State object properties
Property Data Type | Access Description
IsActive bool RO Indicates if target state is currently active

ActiveTime uint RO

Number of consecutive seconds IsActive has
been true for target state

TotalActiveTime uint RO

Total number of seconds IsActive has been true
since method ResetTotalCounts was called

147

Part Il Scanner Logic Programmer
Property Data Type | Access Description
Total number of times the state is entered since
TotalEntryCount uint RO
method
36.4 Methods
Table 36.4-1. State object methods
Method Return Type Description
Clears the TotalActiveTime and
ResetTotals() void
TotalEntryCount values

36.5 Modifiers

Table 36.5-1. State object modifiers

Modifier Description
Marks the onEnter or onExit blocks to be logged by the
logged
event log
initial Marks declared state as initial state for its task
36.6 Usage

Example File: UsingStates.

slogic

This sample script shows the use of states as a means to organize program logic. In
this scenario, the program remains in the NormalConditions state when normal
conditions are present and transitions to the LowTemp state that controls a burner
valve when the system temperature drops too low. The script returns to the
NormalConditions state when the appropriate temperature has been reached. The
conditions checks also ensure a minimum amount of time has been spent in each
state before allowing the active state to change.

148

Scanner Logic Programmer Part Il

Example 36.6-1. State object usage example
resource registerinputs

{
01: TempReading { ... }
¥
resource digitaloutputs
{
01: BurnerValve { ... }
¥
task Taskl
{
initial state NormalConditions
{
onEnter { }
onLoop
{
if (TempReading < 10 && NormalConditions.ActiveTime > 60)
changestate LowTemp;
}
onExit { }
}
state LowTemp
{
// Entry into this state will create an event in the archive.
onEnter logged { BurnerValve.Activate(); }
onLoop
{
if (TempReading > 15 && LowTemp.ActiveTime > 10)
changestate NormalConditions;
}
onExit { BurnerValve.Deactivate(); }
}
}

149

Part Il Scanner Logic Programmer

37 System State Objects

There are two system states that are required to be declared within the program
object, the abortState and the failState. These states come after the task
declarations and before the subroutine declarations, within a set of #region -
#endregion preprocessor directives which form a collapsible region named System
Declarations.

Example 36.6-1. System Declarations region
#region System Declarations

abortState
{
onEnter { }
onLoop { }
failState
{
onEnter { }
onLoop { }
}
#endregion

150

Scanner Logic Programmer Part Il

38 Abort State Object

38.1 General description

The abortState is one of two required system state objects that must be declared
within the program object. When an operator sends an abort signal, the Scanner Logic
Script runs to the end of the current script execution cycle. At the start of the next
execution cycle the program transitions to the abortState where it executes the
onEnter block once before executing the onLoop block once a second until the
program is restarted. Note that the onExit block of the state in which the abort is
detected does not execute.

38.2 Declaring abortState

The Abort State object declaration begins with the keyword abortstate and
contains one onEnter and one onLoop block within a pair of open and close braces.
The onEnter block may be configured to create event records by declaring it with the
logged modifier keyword.

Parser errors will be generated for improper or incomplete declarations, or if the
Abort State object declaration is omitted.

Example 38.2-1. Abort State object declaration example

abortstate

{
onEnter logged

{
}

onLoop

{
}
}

38.3 Entering abortState
At any point during program execution, an abort signal may sent to trigger the
transition to the abortState. There are several methods for signaling the abort of a
Scanner Logic Script program:

151

Part Il Scanner Logic Programmer

Table 38.3-1. Triggering the Abort State ina S3100 device

Entry Point Description
Navigate to #L.CControl page on the web interface (Navigation Bar -> Control ->

Scanner Logic Controller -> Program Control) and click the “Emergency Stop”
button.

Refer to the Scanner 3100 Web Interface User Manual for more details.
Attach a hardware switch to a Digital I/O port. Configure the Digital /O Mode
Hardware switch via | as “Special Function Input Mode” and select the Special Function Selection

Web Interface

Digital Input “Abort Scanner Logic Script program”.
Refer to the Scanner 3100 Web Interface User Manual for more details.
Modbus Register Send 800001 to Modbus Command Register 75.

Command Refer to the Modbus Protocol Manual for your device for more details.

38.4 Usage

Example File: UsingabortState.slogic

In this example script, after sending an abort command two UserEventRecords are
created containing the day and month when the abort command was sent. Two
holding registers are also used, one displays the tank level at the time of the abort
command being sent, the other is continually updated in the abortState onLoop
displaying a live reading of fluid level.

Example 38.4-1. Abort State object usage example

resource registerinputs

{
01: TankLevel
{
description: "Percentage of tank filled with fluid";
}
}
registers configuration
{
01: TankMaxHeight { ... }
}
registers holding
{
01: FluidLevel { ... }
02: CurrentFluidLevel { ... }
}
. // Send abort command during runtime execution
abortState
{

onEnter

152

Scanner Logic Programmer Part Il

{
UserEventRecordl.Value = RealTime.Day;
UserEventRecord2.Value = RealTime.Month;
UserEventRecordl.CreateEventRecord();
UserEventRecord2.CreateEventRecord();
FluidLevel = (TankLevel / 100) * TankMaxHeight;
}
onLoop
{
CurrentFluidLevel = (TankLevel / 100) * TankMaxHeight;
}

153

Part Il Scanner Logic Programmer

39 Fail State Object

39.1 General Description

The failState is one of two required system state objects that must be declared
within the program object. When a run time error occurs, Scanner Logic Script stops
execution at the current location and automatically transitions to the failState
where it executes the onEnter block once before executing the onLoop block once a
seconds until the program is restarted.

39.2 Declaring failState

The Fail State object declaration begins with the keyword failstate and contains
one onEnter and one onLoop block within a pair of open and close braces. The
onEnter block may be configured to create event records by declaring it with the
logged modifier keyword.

Parser errors will be generated for improper or incomplete declarations, or if the Fail
State object declaration is omitted.

Example 39.2-1. Fail State object declaration example

failstate

{
onEnter logged

{
}

onLoop

{
}
}

39.3 Entering failState

During program execution, errors may occur due to resource misconfiguration, fail
states in Scanner inputs, or problems caused by statements in the program itself.

The most commonly encountered errors are resource validation errors. These errors
are due to associated Scanner resources entering an invalid or unexpected state
during program execution.

154

Scanner Logic Programmer

Part Il

Table 39.3-1. Resource Validation Errors

Logic Script Resource <N> Validation Error(s)
FlowRun<N> 1,2 Flow Run <N> Accumulation Control is not configured for
SLogic control.
Flow Run <N> Is disabled or is failing.
FlowArchive N/A Creation of Partial Archive Records is disabled and will
prevent SLogic function.
analogpidcontrollers 1,2 Analog Output <N> is not configured for SLogic control.
digitalpidcontrollers N/A Digital Valve 1 is not configured for SLogic control.
digitaloutputs 1,2, ..,6 | Digital Output <N> is not configured for SLogic control.
digitalinputs 1,2, .., 6 | Digital Input <N> is not enabled and is required by installed
SlLogic program.
Display N/A Local LCD Display mode is not configured for SLogic control.
registerinputs 1,2, ..., 32 | Register Input <N>’s associated Scanner register is not a valid
selection.
Register Input <N> category does not match the category of
the associated Scanner register.
Register Input <N>'s associated Scanner register is Disabled
or in Fail state.
39.4 Usage

Example File: UsingfailState.slogic

This example will cause a run time error and enter the failstate. The onEnter for the
failState is logged and the program asserts an alarm to warn the user. It also
deactivates a valve switch and starts a timer in order to record how long the program

has been in failu

re mode.

Example 39.4-1. Fail State object usage example

r

{
}

r

{
}

r

{

esource digitaloutputs

91: ValveControl { ..

esource alarms

01: Alarmli { ... }

esource timers

01: FailTimer { ... }

-}

155

Part Il Scanner Logic Programmer

}
task Taskl
{
// Note: To observe a run time error, ensure that Digital I/O 1 "Digital I/O Mode"
is not set to "Track Scanner Logic Controller".
initial state Statel
{
onEnter { }
onLoop { }
onExit { }
}
}
failState
{
onEnter logged
{
ValveControl.Deactivate();
Alarml.Assert();
FailTimer.Start();
}
onLoop { }
}

156

Scanner Logic Programmer Part Il

40 Subroutines

40.1

40.2

General Description

A subroutine is a collection of statements that can be invoked by name.
Subroutines are usable from any state in any task and have access to the global
collection of register and resource objects. The return statement may be used at
any point within a subroutine to stop its execution and return to the location where
the subroutine was called to resume execution.

In the current version of Scanner Logic Script, a subroutine does not accept
arguments or directly return values. The only return type allowed in a subroutine
declaration is void, indicating that there is no return value. Nevertheless, a
subroutine can access any of the resource or registers objects in the program
scope. to use as arguments or indirectly provide as return values for the calling task.

A subroutine may not call itself or any other subroutine.

A Scanner Logic Script program may declare up to 100 subroutines.

Declaring Subroutines

The Subroutine declaration begins with the keywords void subroutine followed by
a user defined identifier and contains zero or more statements within a pair of open
and close braces.

Parser errors will be generated for improper or incomplete declarations.

Example 40.2-1. Subroutine declaration example

void subroutine SubroutineNamel

{

}
40.3

Usage

Example File: UsingSubroutines.slogic

The example script showcases how subroutines can be invoked and used in different
blocks when the same code needs to be re-used in different contexts. This performs
common actions (for example, collects some state transition logic in, loading a single
subroutine GetNextStateNumber().

157

Part Il

Scanner Logic Programmer

Example 40.3-1. Subroutine usage example

registers holding

{
01: StateNumber { ... }
02: NextStateNumber { ... }
}
task Taskl
{
initial state Statel
{
onEnter { StateNumber = 1; }
onLoop
{
GetNextStateNumber();
if (NextStateNumber == 2)
changestate StateName2;
}
onExit { }
}
state State2
{
onEnter { StateNumber = 2; }
onLoop
{
GetNextStateNumber();
if (NextStateNumber == 1)
changestate StateNamel;
}
onExit { }
}
}
void subroutine GetNextStateNumber()
{
if (StateNumber == 1)
{
NextStateNumber = 2;
return;
}
NextStateNumber = 1;
}

158

Scanner Logic Programmer Part Il

41 System Objects

41.1

41.2

General Description

System objects are built-in instances of global system object types. Their object
names are pre-defined in a Scanner Logic Script program, and you cannot re-use their
names as an identifier for resource or register objects, tasks, states, or subroutines.

System objects provide access to obtain information from the Scanner 3100 device,
to affect some Scanner 3100 options, and to initiate certain actions in the Scanner
3100.

System Object Types

The table below summarizes the types of system objects available from user code in
the program. The object identifier names, descriptions of object properties and
methods, and usage examples are contained in the subsequent chapters.

Table 41.2-1. Types of system objects

Object Type Qty Description Ref.
Accesses the real-time clock of the Scanner host
System_RealTime 1) Ch. 42
environment
System_FlowRun 2 | Allows control of flow run accumulation Ch. 43
System_FlowArchive 1 | Allows creation of partial records Ch. 44
System_TriggeredArchive | 1 | Allows publishing of triggered archive records Ch. 45
System_UserEventRecord 8 | Allows publishing of user event records Ch. 46
System_PrintedTicket 16 | Allows printing pre-defined tickets or reports Ch. 47
Allows control of current display group on LCD
System_Display 1 , Ch. 48
display
System Math 1 | Provides mathematical constants and functions Ch. 49

159

Part Il Scanner Logic Programmer

42 Real Time System Object

42.1 General Description

The global RealTime object is an instance of the System_RealTime object type. It
provides access to the current calendar and time values in the real-time clock of the
Scanner host environment.

42.2 Properties

Table 42.2-1. System_RealTime object properties

Property Data Type | Access Description
Year uint RO Current year
Month uint RO 1 =January, ..., 12 = December
Day uint RO Current Day of the month
Hour uint RO 0=12:00AM, ..., 23 =23:00PM
Minute uint RO Current minute (0-59)
Second uint RO Current second (0-59)
DayOfWeek uint RO 1 =Sunday, ..., 7 = Saturday
42.3 Usage

Example File: UsingRealTime.slogic

In this sample script, the RealTime object is used to check which day of the month it
is. In this case the program is set to generate an archive report on the 15th of every
month

Example 42.3-1. System_RealTime object usage example

task Taskl
{
initial state CheckDayOfMonth
{
onEnter { }
onLoop
{
if (RealTime.Day == 15) { changestate CreateArchiveReport; }
}
onExit { }
}

160

Scanner Logic Programmer Part Il

state CreateArchiveReport

{
}

161

Part Il Scanner Logic Programmer

43 Flow Run System Object

43.1 General Description

The global FlowRunl and FlowRun2 objects are instances of the System_FlowRun
object type. They provide access to the accumulation control of the Flow Runs in the
Scanner host environment.

43.2 Required S3100 Device Configuration

For these objects to be used, the respective Flow Runs must be enabled and
configured to be under the control of Scanner Logic Script in the Web Interface.

The Scanner 3100 has 2 Flow Runs. Flow Run 1 must be configured to use the
FlowRuni object. Flow Run 2 must be configured to use the FlowRun2 object. For each
Flow Run System object defined, the Enable Flow Run option and the Accumulation
Control Mode will be verified at the beginning of the program and at the start of each
script execution cycle. If the Enable Flow Run option specified is not “Yes”, or the
Accumulation Control Mode option specified is not “Controlled by Scanner Logic
Script program”, the Scanner Logic Script will encounter a run time error and the
failState State will be invoked. The default configuration for Enable Flow Run is
“Yes” for Flow Run 1 and “No” for Flow Run 2. The default configuration for
Accumulation Control Mode is “Always Accumulate” for both Flow Runs.

Table 43.2-1. System_FlowRun object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement

, Controlled by Scanner Logic
Flow Run Accumulation Control Mode)
Script program

Flow Run Enable Flow Run Yes

43.3 Properties

Table 43.3-1. System_FlowRun object properties

Property Data Type | Access Description

Indicates whether the System_FlowRun object is
currently accumulating. This is a read-only
property, and the accumulating state is changed
with the EnableAccumulation() and
DisableAccumulation() methods. The default
value is false.

IsAccumulating bool RO

162

Scanner Logic Programmer

Part Il

Property Data Type | Access Description
Number of consecutive seconds IsAccumulating
has been true. <does this go to zero once not
AccumulatingTime uint RO accumulting, or does it maintain the last count
and start back at zero once accumulating
again?>
Number of consecutive seconds IsAccumulating
NotAccumulatingTime uint RO
has been false
43.4 Methods

Table 43.4-1. System_FlowRun object methods

Method Return Type
EnableAccumulation() void
DisableAccumulation() void

Description

Start flow run accumulating flow

Stop flow run accumulating flow

435 Usage

Example File: UsingFlowRun.slogic

This program demonstrates how to use the flow run system object. When the
program starts it ensures only one flow run is actively accumulating. If flow run 1 is
active it takes priority and flow run 2 is disabled.

Example 43.5-1. System_FlowRun object usage example

registers holding

{
01: InactiveTime { ... }
}
task Taskl
{

initial state FlowRun_Initialize

{

onEnter

{

if (FlowRunl.IsAccumulating) { FlowRun2.DisableAccumulation(); }

if (!FlowRunl.IsAccumulating)

¢ InactiveTime = FlowRunl.NotAccumulatingTime;
FlowRun2.EnableAccumulation();
}
}
onLoop
{

163

Part Il Scanner Logic Programmer

if (FlowRunl.IsAccumulating) { changestate FlowRunl_Accumulate; }
if (FlowRun2.IsAccumulating) { changestate FlowRun2_Accumulate; }

}
onExit { }
}
state FlowRunl_Accumulate
{
}
state FlowRun2_Accumulate
{
}

164

Scanner Logic Programmer Part Il

44 Flow Archive System Object

44.1

44.2

General Description

The global FlowArchive object is an instance of the System_FlowArchive object
type. It provides access to the Flow Archive system in the Scanner host environment
and allows a Scanner Logic Script program to signal the creation of partial archive
records.

Required S3100 Device Configuration

For this object to be used, the creation of partial records must be enabled in the Web
Interface.

The Scanner 3100 has 2 Flow Archives that must be configured to use the
FlowArchive object. The Enable Partial Records option will be verified at the
beginning of the program and at the start of each script execution cycle. If the Enable
Partial Records option specified is not “Yes”, the Scanner Logic Script will encounter a
run time error and the failState State will be invoked. Enable Partial Records is
configured by default as “Yes”.

Table 44.2-1. System_FlowArchive object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement

Flow Archive 1]
) Enable Partial Records Yes
Flow Archive 2

44.3

Methods

Table 44.3-1. System_FlowArchive object methods

CreatePartialRecords() ‘ void

Method ‘ Return Type ‘ Description

Signals the Scanner archive system to create
partial archive records

165

Part Il Scanner Logic Programmer

44,4 Usage

Example File: UsingFlowArchives.slogic

In this sample script, a single state waits for a digital input high to create a partial
record. A cooldown timer starts to limit the number of records created.

Example 44.4-1. System_FlowArchive object usage example
resource digitalinputs

{
01: ArchiveButton { ... }
}
resource timers
{
01: CooldownTimer { ... }
}
registers configuration
{
01: TotalTestTime { ... }
}
task Taskl
{
initial state WaitForTestStart
{
onEnter { CooldownTimer.Start(); }
onLoop
{
if ((ArchiveButton.ActiveTime == 1) && (CooldownTimer.Time > 9))
{
FlowArchive.CreatePartialRecords();
CooldownTimer.Reset();
}
}
onExit { }
}
}

166

Scanner Logic Programmer Part Il

45 Triggered Archive System Object

45.1

45.2

General Description

The global TriggeredArchive object is an instance of the

System TriggeredArchive object type. It provides access to the Triggered Archive
system in the Scanner 3100 host environment and allows a Scanner Logic Script
program to create triggered archive records.

Required S3100 Device Configuration

The Scanner Triggered Archive system must be configured for manual triggering for
the TriggeredArchive object to function. The Archiving Mode of the Triggered
Archive system will be verified at the beginning of the program and at the start of
each script execution cycle. If the Archiving Mode specified is not “Log Manually (via
serial protocol, web page, or Scanner Logic Script program)”, the Scanner Logic Script
will encounter a run time error and the failState State will be invoked. Archiving
Mode is configured by default as “Disabled”.

Table 45.2-1. System_Display object required S3100 device configuration

Scanner Resource

Configuration

Requirement
Parameter g

Triggered Archive Archiving Mode

Log Manually (via serial protocol, web page, or Scanner
Logic Script program)

45.3

Properties

Table 45.3-1. System_TriggeredArchive object properties

NumberOfRecords ‘ uint ‘ RO ‘

Property ‘ Data Type ‘ Access ‘ Description

Number of Triggered Archive records stored by
the Scanner

167

Part Il Scanner Logic Programmer

45.4 Methods

Table 45.4-1. System_TriggeredArchive object methods

Method Return Type Description
Signals the Scanner archive system to trigger the
PublishRecord() void . i)
creation of a Triggered Archive record
Signals the Scanner archive system to reset the
ResetArchive() void Triggered Archive, returning the
NumberOfRecords to zero
455 Usage

Example File: UsingTriggeredArchives.slogic

This sample script waits for the ArchiveButton to be pressed; when pressed a
changestate occurs. The program will then proceed to publish a
TriggeredArchive record every second for a Test Time defined by the user (default
set to 4 hours).

Example 45.5-1. System_TriggeredArchive object usage example

resource digitalinputs

{
01: ArchiveButton { ... }
}
resource timers
{
01: CurrentTestTime { ... }
}
registers configuration
{
01: TotalTestTime
{
description: "User set test length (in minutes)";
category: “No Units”;
initial Value: 240;
}
}
task Taskl
{
initial state WaitForTestStart
{
onEnter {}
onLoop
{

168

Scanner Logic Programmer Part Il

if (ArchiveButton.Activetime > 1) { changestate RunWellTest; }

}
onExit {}
}
state RunWellTest
{
onEnter { CurrentTestTime.Start(); }
onLoop
{
TriggeredArchive.PublishRecord();
if (CurrentTestTime >= TotalTestTime * 60) { changestate WaitForTestStart; }
}
onExit { CurrentTestTime.StopReset(); }
}

169

Part Il Scanner Logic Programmer

46 User Event Record System Object

46.1 General Description

The global UserEventRecordl. . .UserEventRecord8 objects are instances of the
System_UserEventRecord object types. They provide access to the event logging
system in the Scanner 3100 and allow creation of user-generated event records.
These events are general purpose and are viewable in the Event Archive using the
Scanner Data Manager software. When invoking the creation of the event archive
record, the user can provide a floating-point value which will be available in the
record.

46.2 Properties

Table 46.2-1. System_UserEventRecord object properties

Property ‘ Data Type ‘ Access ‘ Description
‘ ‘ The event/alarm value added to the event archive
Value float R/W
record
46.3 Methods
Table 46.3-1. System_UserEventRecord object methods
Method Return Type Description

Creates a labeled event archive record
CreateEventRecord() void . .
containing with the current Value

46.4 Usage

Example File: UsingUserEventRecords.slogic

This sample program showcases user event records. Three user event records are
declared: User event records 1 and 2 capture and record analog input 1 and 2 every
minute; User event record 8 increments every second and then creates a record.

Example 46.4-1. System_UserEventRecord object usage example
resource registerinputs

{
01: AnalogInl { ... }
02: AnalogIn2 { ... }
¥
resource timers
{
01: EventTimer { ... }

170

Scanner Logic Programmer

Part Il

}
task Taskl
{
initial state User_Event_Regulation
{
onEnter
{
EventTimer.Start();
UserEventRecord8.Value = 0;
}
onLoop
{
if (EventTimer >= 60)
{
UserEventRecordl.Value = AnalogInl.Value;
UserEventRecord2.Value = AnalogIn2.Value;
UserEventRecordl.CreateEventRecord();
UserEventRecord2.CreateEventRecord();
EventTimer.Reset();
}
UserEventRecord8.Value++;
UserEventRecord8.CreateEventRecord();
}
onExit { }
}

171

Part Il

Scanner Logic Programmer

47 Printed Ticket System Object?

47.1

47.2

Table 47.2-1. System_PrintedTicket object methods

General Description

The global PrintedTicketl...PrintedTicket16 objects are instances of the
System PrintedTicket object type. They provide access to stored ticket definitions

in the Scanner 3100.

Methods

Method

Print()

Return Type

void

Description

Signals the print of the ticket.

I Implemented in Logic Script but not yet supported by Scanner 3100. Planned for a future release.

172

Scanner Logic Programmer Part Il

48 Display System Object

48.1

48.2

General Description

The global Display object is an instance of the System_Display object type. It
provides access to the Scanner 3100 LCD Display system and allows a Scanner Logic
Script program to access and control the current Display Group being presented on
the Local LCD Display.

A Display Group is a user configurable collection of register values for presentation on
the Local LCD Display. A user can design multiple Display Groups to be displayed in a
sequence using the Web Interface. Each Display Group is numbered, and allows for
the definition of Display Selections and their Display Position within the group. There
are several Display Modes which determine the behavior and timing of display
updates and Display Group changes.

Required S3100 Device Configuration

The Display system in the Scanner host environment must be configured for control
by Scanner Logic Script for this object to function. The Message Display Mode of the
Display system will be verified at the beginning of the program and at the start of
each script execution cycle. If the Message Display Mode specified is not “Controlled
by Scanner Logic Script program”, the Scanner Logic Script will encounter a run time
error and the failState State will be invoked. Message Display Mode is configured
by default as “Grouped Display Selections”.

Table 48.2-1. System_Display object required S3100 device configuration

Scanner Resource Configuration Parameter Requirement
)) Controlled by Scanner Logic
Display Message Display Mode ,
Script program
48.3 Properties
Table 48.3-1. System_Display object properties
Property Data Type | Access Description
CurrentDisplayGroup uint RO The current Display Group being displayed

SetValue uint R/W

The Display Group to be set with the
SetDisplayGroup() method (1 - 32)

173

Part Il Scanner Logic Programmer

48.4 Methods

Table 48.4-1. System_Display object methods

Method Return Type Description
Advances the current Display Group to the
AdvanceDisplayGroup() void i
next available group
. . Sets the current Display Group to the
SetDisplayGroup() void
SetValue
48.5 Usage

Example File: UsingDisplaySystemObjects.slogic

In this sample script, the first 11 display groups have been defined on the web
interface. The program will cycle through them all at 10 seconds a display group until
it reaches display group 11. It then resets the display group to 1, waits 10 seconds,
and reruns the cycle.

Example 48.5-1. System_Display object usage example
resource timers

{
01: DisplayTimer
{
description: "A timer to count the display time.";
}
}
task Taskl
{
initial state Initialize Display_Groups
{
onEnter

{
Display.SetValue = 1;
Display.SetDisplayGroup();
DisplayTimer.Start();

}

onLoop { changestate Cycle First_ 10 Display_ Groups; }

onExit { }

state Cycle First_10 Display Groups

{
onEnter { DisplayTimer.Reset(); }

174

Scanner Logic Programmer Part Il

onLoop
{
if (DisplayTimer.Time > 10)
{
Display.AdvanceDisplayGroup();
DisplayTimer.Reset();
}
if (Display.CurrentDisplayGroup > 10) { changestate Reset Display Cycle; }
}
onExit { }
}
state Reset _Display Cycle
{
}

175

Part Il

Scanner Logic Programmer

49 Math Object

49.1 General Description

The global Math object is an instance of the System_Math object type. It contains
constants and methods for use in calculations and expressions.

49.2 Math Constants

This chapter describes Scanner Logic Script math constants. The Math object defines
a number of constant members that you can use in expressions. The constants are all

float type.

Table 49.2-1. System_Math Object Constants

Constant Value Definition
Euler’s Number (e):
Math.E 2.71828182845904523536 N
e = lim (1 + —)
n—oo n
Math.LOG2E 1.44269504088896340736 log,(e)
Math.LOG1OE 0.434294481903251827651 logyo(e)
Math.LN2 0.693147180559945309417 In2
Math.LN1© 2.30258509299404568402 In10
m: The ratio of a circle's circumference to its
Math.PI 3.14159265358979323846)
diameter
49.3 Math Library Functions

Scanner Logic Script implements a library of common math functions. In the
following tables, x and y may be literal values or properties of resource or registers
objects. The type of the x and y arguments is float, and the methods all return

float values.

176

Scanner Logic Programmer

Part Il

Table 49.3-1. System_Math Object Library Functions

Method Return Type Description
Absolute Value
Math.Abs(x) float
Returns x if x >= 0, -x if x<0
Ceiling
Math.Ceil(x) float
Returns the smallest integer value greater than or equal to x
Floor
Math.Floor(x) float
Returns the largest integer value less than or equal to x
Square Root
Math.Sqrt(x) float
Errorifx<0
Natural Logarithm
Math.Log(x) float
Errorifx<=0
Base 10 Logarithm
Math.Logl0(x) float
Errorifx<=0
Exponential
Math.Exp(x) float
e to the power of x
Power
Math.Pow(x,y) float
X to the power of y
Random
Math.Rand() float

Create random value x, where (0 <x < 1)

177

Part Il Scanner Logic Programmer

49.3.1 Math Trigonometric Functions

Trigonometric function arguments (x) are expressed in radians.

Table 49.3-2. System_Math Object Trigonometric Functions

Method Return Type Description
Math.Sin(x) float Sine
Math.Cos(x) float Cosine
Math.Tan(x) float Tangent
Math.Asin(x) float Arcsine

Range [-/2, /2], x € [-1, 1]
Math.Acos(x) float Arccosine
Range [0,], x € [-1, 1]

Math.Atan(x) float Arctangent

Range [-1t/2, /2]
Math.Hsin(x) float Hyperbolic Sine
Math.Hcos(x) float Hyperbolic Cosine
Math.Htan(x) float Hyperbolic Tangent

178

Scanner Logic Programmer Part Il

50 User HMI Field Object

50.1

General Description

HmiField objects are used to allow a Scanner Logic program to create a user-
designed human-to-machine interface (HMI). Based on the information provided by
the Scanner Logic program, the web interface creates the User HMI page. Using the
HmiFields objects, groups of fields with custom headers can be created. This allows
for a designing of specific presentations to operators and a means to provided them
with all of the operational data on a single page.

The declaration for this object type allows the specification of a property belonging to
an object which was declared by the user or is a member of a system object. A user-
declared description can be added to provide extra information for the operator. If
the selected property has the read/write attribute, the HmiFields can be declared to
permit modification from the web interface. Declaring the object with the optional
heading parameter will cause the insertion of the header text and start a new field
group with the object as the first field.

HmiFields objects act as a direct bridge between the object properties declared
within a Scanner Logic Script program and the Scanner host environment. At the
beginning of each script execution cycle, any changes to the HMI fields tags in the
host environment are reviewed. If the HniFields was declared to permit external
modification, the new value is adopted into the Logic Script environment. At the end
of each script execution cycle, any changes to the watched properties are copied out
to the HmiFields value.

HmiFields objects publish their values to the Scanner host environment for use in
archiving, displaying on the LCD, acting as inputs for flow runs and calculators, and
driving Analog and Digital outputs.

All declared headers and fields groups will appear in a User HMI webpage in the Logic
Controller section of the web interface. The User HMI webpage is accessible by all
users with valid access. The access level required to write to a field and modify it from
the User HMI webpage is defined with the ProgInfo.

Up to 64 HmiFields objects may be declared for use in a Scanner Logic Script
program.

Each field must be assigned to a specific field number (01 — 64). When accessing
these fields through Scanner systems that are unaware of the user defined name (e.g.

179

Part Il Scanner Logic Programmer
serial protocol, User Event Archive), these field are identified using their defined
number with the format m32_LM_HF_1 Holding RN (where N is the field number).

50.2 Declaring HmiFields Objects

The HmiFields declaration group begins with the keywords hmifields user, and
contains a hmifields item declaration for each user field to be used in the program
within a pair of open and close braces. Each hmifields item declaration consists of a
unique field index number between 01 and 64 and a system defined identifier
separated by a colon, and contains a list of parameter assignment statements within
a pair of open and close braces.

Parameter assignments that are omitted will have the parameters set to default
values according to the parameter’s data type (i.e. string : "", uint : 9, float : 8.9, bool
: false). Unused hmifields items may be omitted from the hmifields declaration
group. Omitting the header parameter will place the field into the existing field
group. Including the header parameter will cause the insertion of the new header
text and start a new field group with the declared field as the first field. If no
HmiFields items are required, the entire hmifields declaration group may be
omitted.

Parser errors will be generated for improper or incomplete declarations.

Example 50.2-1. HmiFields object declaration example

hmifie
{
01:
{

1lds user
UserHMI_o01

propertyname: "MyTask.MyState.TotalActiveTime";

header: "Program Statistics";

description: "Total time spent in MyState state (seconds)";
webmodify: false;

¢ UserHMI_02

propertyname: "MinFlowingDP.Value";
description: "User defined configuration register value property.";
webmodify: true;

¢ UserHMI_64

propertyname: "FlowingAlarm.HoldOffTime";
description: "Property of user defined alarm object.";
webmodify: false;

180

Scanner Logic Programmer Part Il

50.3 Declaration Parameters

Table 50.3-1. HmiFields object declaration parameters

Parameter Type Code Description

A string containing the complete specification of a
propertyname <propnanme> property including the user declared object name or
system object name, and the property name.

A user-provided string describing the optional field group
header <stréd>
header text.

description <str256> A user-provided string describing the user hmifield object

The permission parameter for allowing the field to be
modified from the web interface if the property described
webmodify bool in propertyname has the R/W access attribute. If the
described property does not allow write access, this

parameter is ignored.

50.4 Properties

Table 50.4-1. HmiFields object properties

Property Data Type | Access Description

Holds the value of the hmifields object; since this is
Value * float %0 the default property of the object, this property name
[default] oa can be omitted when referencing the object, and the

compiler will automatically use the Value property

* These properties can be initialized with initial_* parameters.

50.5 Usage

HmiFields are not used within a Logic Script program but provide the Scanner host
environment the information required to create the User HMI webpage in the Logic
Controller section of the web interface. It is not recommended to use the value
property of a HmiFields object within statements and expressions. Unexpected
results may occur because the hmi field Value property is not updated until after the
execution cycle has completed. In other words, the Value property will always
contain the final contents of the assigned propertyname from the previous execution
cycle.

181

Part Il Scanner Logic Programmer

This page is left blank intentionally.

182

Scanner Logic Programmer

Part IV

Part IV—Appendix A

51 Scanner 3100 Unit Categories

51.1

General Description

Measurement units are broken down by Measurement Category and Unit Type.

51.2

Measurement Categories

All values in the Scanner 3100 have a measurement category. A category comprises
numerator and denominator unit types, and defines the base metric units and default
imperial units.

Table 51.2-1. Measurement categories

. Scanner . U.S.
Name Numerator | Denominator Base Metric Customary Rate
Type Index | Type Index) Default Scalable?
P Yp Units Default
No Units 0 0 — — — Yes
u ted G
nco\l/’rtlec edbas 1 0 m3 m3 ft3 Yes
olume
u ted
) nc.orrec © 1 0 m3 m3 bbl Yes
Liquid Volume
Gas Volume 1 0 m3 m3 MCF Yes
Liquid Volume 1 0 m?3 m?3 bbl Yes
Static Pressure)
2 0 Pa kPa psia No
(absolute)
Static Pressure)
(gauge) 3 0 Pa(g) kPa(g) psig No
Differential
o 4 0 Pa kPa "H20@68F No
ressure
Temperature 5 0 K °C °F No
Mass 6 0 kg kg lbm Yes
Energy 7 0 J MJ Btu Yes
Length 10 0 m mm inch No
Frequency 11 0 Hz Hz Hz No

183

Part IV Scanner Logic Programmer
. Scanner . U.S.
Numerator | Denominator Metric Rate
Name Type Index | Type Index Base Default Customary Scalable?
P Units Default)
Resistance 12 0 Ohm Ohm Ohm No
Current 13 0 A mA mA No
Voltage 8 0 Vv Vv Vv No
Fraction 20 0 — — — No
Viscosity 17 0 kg/mes cP lom/ftes No
Density
6 1 kg/m3 kg/m3 lbm/ft3 No
(Absolute) e/ e/ /
Molar Density 18 1 kgemol/m?® | kgemol/m?3 Ibemol/ft3 No
Molar Mass 9 0 kg/kgemol | kg/kgemol Ib/Ibemol No
Mass heatin
& 7 6 J/kg MJ/kg MMBtu/lbm No
value
Volume heatin
& 7 1 J/m3 MJ/m3 MMBtu/ft3 No
value
Energy per Mol
(Molar heat 7 18 J/kgemol J/kgemol | MMBtu/lbemol No
values)
Thermal
Expansion 24 5 1/K 1/K 1/°F No
Factor
Pulses per
Volume (Vol. K- 16 1 pulses/m3 | pulses/m3 pulses/gal No
factor)
Pulses per Mass
P 16 6 pulses/kg | pulses/kg pulses/lbm No
(Mass K-factor)
Percent 15 0 % % % No
Factor 0 0 — — — No
Mole Fraction 20 0 — — — No
Base Sediment
15 0 % % % No
and Water
Power 25 0 wW wW wW Yes

184

Scanner Logic Programmer Part IV
Name ?umerator Denominator Sc;:sr;er Metric Custjc;fr'\ary Rate ,
ype Index | Type Index Units Default Default Scalable?
Charge 26 0 Ah Ah Ah Yes
51.3 Unit Types
Each unit type has a set of allowable units. The Scale and Offset are the conversion
factor and offset to apply to a value in base units to calculate the value in each of the
other units.
51.3.1 None
Table 51.3-1. Units for Unit Type None (Index 0)
Slogic Name Scale Offset
None 1 0
51.3.2 Volume
Table 51.3-2. Units for Unit Type Volume (Index 1)
Slogic Name Scale Offset
m3 meter cubed 1 0
E3m3 thousand meters cubed 0.001 0
E6m3 million meters cubed 0.000001 0
MCF thousand feet cubed 0.035314667 0
MMCF million feet cubed 0.0000353146667214887 0
ft3 feet cubed 35.31466672 0
| litre 1000 0
igal imperial gallon 219.9692483 0
gal US gallon 264.1720524 0
bbl barrel 6.28981077 0
SCF standard cubic foot 35.31466672 0
cm3 centimeter cubed 1000000 0
10m3 ten meters cubed 0.1 0
100m3 hundred meters cubed 0.01 0

185

Part IV Scanner Logic Programmer

51.3.3 Static Pressure (Absolute)

Table 51.3-3. Units for Unit Type Static Pressure (Index 2)

SLogic Name Scale Offset
Pa Pascal 1 0
kPa kilopascal 0.001 0
MPa megapascal 0.000001 0
psia pounds per square inch (absolute) 0.000145038 0
inHg inch of mercury 0.000296134 0
inH20@68F inch of water @ 68F 0.004021863 0
ftH2O@68F foot of water @ 68F 0.000334883 0
atm atmosphere 0.00000986923266716023 0
bar bar 0.00001 0
mbar millibar 0.01 0
kg/cm?2 kilogram per centimeter squared 0.0000101971621297793 0
inH20@60F inch of water @ 60F 0.0040186 0
inH20@39.167F inch of water @ 39.167F 0.004014737 0

51.3.4 Static Pressure (Gauge)

Table 51.3-4. Units for Unit Type Static Pressure (Gauge) (Index 3)

SLogic Name Scale Offset
Pa(g) Pascal (gauge) 1 0
kPa(g) kilopascal (gauge) 0.001 0
MPa(g) megapascal (gauge) 0.000001 0
psig pounds per square inch (gauge) 0.000145038 0
inHg(g) inch of mercury (gauge) 0.000296134 0
inH20(g) @68F inch of water @ 68F (gauge) 0.004021863 0
ftH20(g) @68F foot of water @ 68F (gauge) 0.000334883 0
atm(g) atmosphere (gauge) 0.00000986923266716023 0
bar(g) bar (gauge) 0.00001 0

186

Scanner Logic Programmer Part IV
SLogic Name Scale Offset
mbar(g) millibar (gauge) 0.01 0

kg/cm2(g) kilogram per centimeter squared |4 1000101971621297793 0
(gauge)

inH20(g) @60F inch of water @ 60F (gauge) 0.0040186 0

inH20(g) @39.167F | inch of water @ 39.167F (gauge) 0.004014737 0

51.3.5 fferential Pressure

Table 51.3-5. Units for Unit Type Differential Pressure (Index 4)

SlLogic Name Scale Offset
Pa Pascal 1 0
kPa kilopascal 0.001 0
MPa megapascal 0.000001 0
psi pounds per square inch 0.000145038 0
inHg inch of mercury 0.000296134 0
inH20@68F inch of water @ 68F 0.004021863 0
ftH20@68F foot of water @ 68F 0.000334883 0
mmH20@68F millimeter of water @ 68 F 0.102155312 0
atm atmosphere 0.00000986923266716023 0
bar bar 0.00001 0
mbar millibar 0.01 0
inH20@60F inch of water @ 60F 0.0040186 0
inH20@39.167F foot of water @ 39.167F 0.004014737 0
mmH20@60F millimeter of water @ 60 F 0.102072439 0
mmHg inch of mercury 0.007500617 0
kg/cm?2 kilogram per centimeter squared 0.000010197162129779 0

51.3.6 Temperature

Table 51.3-6. Units for Unit Type Temperature (Index 5)

SLogic Name Scale Offset
K Kelvin 1 0

187

Part IV Scanner Logic Programmer
Slogic Name Scale Offset
degC Celsius 1 -273.15
degF Fahrenheit 1.8 -255.372
degR Rankine 1.8 0
51.3.7 Mass
Table 51.3-7. Units for Unit Type Mass (Index 6)
SlLogic Name Scale Offset
kg kilogram 1 0
lbm pound 2.204622622 0
g gram 1000 0
51.3.8 Energy
Table 51.3-8. Units for Unit Type Energy (Index 7)
SlLogic Name Scale Offset
J Joule 1 0
kJ kilojoule 0.001 0
M) megajoule 0.000001 0
GJ gigajoule 0.000000001 0
Btu British thermal unit 0.000947817 0
MBtu thousand British thermal unit 0.000000947817120313317 0
MMBtu million British thermal unit 0.000000000947817120313317 0
kWh kilowatt-hour 0.000000277777777777778 0
kcal kilocalorie 0.000238846 0
10MJ ten megajoule 0.0000001 0
100MJ hundred megajoule 0.00000001 0
BHUC British thermalh unit 0.000948213 0
(thermochemical)

188

Scanner Logic Programmer

Part IV

51.3.9 Voltage

Table 51.3-9. Units for Unit Type Voltage (Index 8)

Slogic Name Scale Offset
\ Volt 1 0
mV millivolt 1000 0
51.3.10 Molar Mass
Table 51.3-10. Units for Unit Type Molar Mass (Index 9)

SlLogic Name Scale Offset
kg/kg*mol kg/kg-mol 1 0
lb/Ib*mol lb/Ib-mol 1 0

g/g*mol g/g-mol 1 0
51.3.11 Length
Table 51.3-11. Units for Unit Type Length (Index 10)
SlLogic Name Scale Offset
m meter 1 0
cm centimeter 100 0
mm millimeter 1000 0
km kilometer 0.001 0
inch inch 39.37007874 0
ft foot 3.280839895 0
yard yard 1.093613298 0
mile mile 0.000621371 0
51.3.12 Frequency
Table 51.3-12. Units for Unit Type Frequency (Index 11)
SlLogic Name Scale Offset
Hz Hertz 1 0
kHz kilohertz 0.001 0
MHz megahertz 0.000001 0

189

Part IV

Scanner Logic Programmer

51.3.13 Resistance

Table 51.3-13. Units for Unit Type Resistance (Index 12)

Slogic Name Scale Offset
Ohm Ohm 1 0
kOhm kiloohm 0.001 0
MOhm megaohm 0.000001 0
51.3.14 Current
Table 51.3-14. Units for Unit Type Current (Index 13)
SLogic Name Scale Offset
A Ampere 1 0
mA milliampere 1000 0
51.3.15Time
Table 51.3-15. Units for Unit Type Time (Index 14)
SLogic Name Scale Offset
s second 1 0
ms millisecond 1000 0
mins minute 0.016666667 0
hours hour 0.000277778 0
days day 0.0000115740740740741 0
weeks week 0.00000165343915343915 0
months month 0.0000003802651757 0
years year 0.0000000316887646 0
51.3.16Percent
Table 51.3-16. Units for Unit Type Percent (Index 15)
SLogic Name Scale Offset
% percent 1 0
fraction fraction 0.01 0

190

Scanner Logic Programmer

Part IV

51.3.17Pulse
Table 51.3-17. Units for Unit Type Pulse (Index 16)
SLogic Name Scale Offset
pulses pulses 1 0
51.3.18 Viscosity
Table 51.3-18. Units for Unit Type Viscosity (Index 17)
SLogic Name Scale Offset
kg/m*sec kilogram per meter-second 1 0
P Poise 10 0
cP centipoise 1000 0
lbm/ft*s pound per foot-second 0.671968975 0
51.3.19Mole
Table 51.3-19. Units for Unit Type Mole (Index 18)
SLogic Name Scale Offset
kg*mol kilogram-mole 1 0
lb*mol pound-mole 2.204622622 0
g*mol gram-mole 1000 0
51.3.20Relative Density
Table 51.3-20. Units for Unit Type Relative Density (Index 19)
SlLogic Name Scale Offset
ADen absolute density 1 0
RDL relative density liquid 0.001000985 0
RDG relative density gas 0.816051772 0

191

Part IV

Scanner Logic Programmer

51.3.21 Fraction

Table 51.3-21. Units for Unit Type Fraction (Index 20)

SLogic Name Scale Offset
fraction fraction 1 0
% percent 100 0
51.3.22 System Ticks
Table 51.3-22. Units for Unit Type System Ticks (Index 21)
SlLogic Name Scale Offset
ticks system tick 1 0
s microsecond 10000 0
ms millisecond 10 0
S second 0.01 0
51.3.23 Real Date
Table 51.3-23. Units for Unit Type Real Date (Index 22)
SLogic Name Scale Offset
YYYYMMDD Date 1 0
51.3.24 Real Time
Table 51.3-24. Units for Unit Type Real Time (Index 23)
SLogic Name Scale Offset
HHMMSSCC Time 1 0
51.3.25 Unity
Table 51.3-25. Units for Unit Type Unity (Index 24)
SLogic Name Scale Offset
1 Unity 1 0

192

Scanner Logic Programmer

Part IV

51.3.26 Power

Table 51.3-26. Units for Unit Type Power (Index 25)

SLogic Name Scale Offset
wW Watt 1 0
mwW milliwatt 1000 0
kW kilowatt 0.001 0
51.3.27 Charge
Table 51.3-27. Units for Unit Type Charge (Index 26)
SLogic Name Scale Offset
Ah amp-hour 1 0
mAh milliamp-hour 1000 0
C Coulomb 3600 0
51.4 Rate Scalar
Table 51.4-1. Units for Rate Scalar
SLogic Name Scale Offset
/sec per second 1 0
/min per minute 60 0
/hr per hour 3600 0
/day per day 86400 0

193

WARRANTY - LIMITATION OF LIABILITY: Seller warrants only title to the products, software, supplies and materials and that, except
as to software, the same are free from defects in workmanship and materials for a period of one (1) year from the date of delivery.
Seller does not warranty that software is free from error or that software will run in an uninterrupted fashion. Seller provides all
software “as is”. THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS OR OTHERWISE
WHICH EXTEND BEYOND THOSE STATED IN THE IMMEDIATELY PRECEDING SENTENCE. Seller's liability and Buyer's
exclusive remedy in any case of action (whether in contract, tort, breach of warranty or otherwise) arising out of the sale or use of any
products, software, supplies, or materials is expressly limited to the replacement of such products, software, supplies, or materials on
their return to Seller or, at Seller’s option, to the allowance to the customer of credit for the cost of such items. In no event shall Seller
be liable for special, incidental, indirect, punitive or consequential damages. Seller does not warrant in any way products, software,
supplies and materials not manufactured by Seller, and such will be sold only with the warranties that are given by the manufacturer
thereof. Seller will pass only through to its purchaser of such items the warranty granted to it by the manufacturer.

+ Addintelligent action to your oil & gas solutions + +

© Sensia LLC 2021. All rights reserved.
* Mark of Sensia. Other company, product, and service names are the properties of their respective owners.

	Cover
	Table of Contents
	Table of Tables
	Table of Examples
	Part I—Introductory Information
	1 Introduction
	2 Who Should Read This Document?
	3 Organization of This Document
	4 Conventions Used in This Guide
	5 Parameter Value Type Codes
	6 See Also

	Part II—Logic Script Language Elements
	7 Introduction
	8 Comments
	8.1 General Description

	9 Literal Values
	9.1 General Description
	9.2 Numeric Literals
	9.3 Boolean Literal
	9.4 String Literal

	10 Identifiers
	10.1 General Description

	11 Keywords
	11.1 General Description
	11.2 Keyword Categories

	12 Data Types
	12.1 General Description
	12.2 Primitive Data Types
	12.3 Type Conversion and Type Casting
	12.4 Run Time Numeric Bounds Handling
	12.5 Object Data Types

	13 Constants
	13.1 General Description
	13.2 Remarks

	14 Variables
	14.1 General Description
	14.2 Remarks

	15 Operators
	15.1 General Description
	15.2 Operator Categories
	15.3 Operator Precedence
	15.4 Associativity
	15.5 Adding Parentheses

	16 Expressions
	16.1 General Description
	16.2 Expression Values
	16.3 Operator precedence and associativity
	16.4 Literals and simple names
	16.5 Assignment expressions
	16.6 Invocation expressions
	16.7 Remarks

	17 Statements
	17.1 General Description
	17.2 Types of Statements
	17.3 Assignment Statements
	17.4 Increment and Decrement Statements
	17.5 Invocation Statements
	17.6 Selection Statements
	17.7 Jump Statements
	17.8 Embedded Statements
	17.9 Nested Statement Blocks
	17.10 Parameter Assignment Statements

	18 Preprocessor Directives
	18.1 Region and Endregion Directives
	18.2 Pragma directive

	Part III—Logic Script Objects
	19 Program Object
	19.1 General Description
	19.2 Program Information Region
	19.3 Program Declarations Region
	19.4 System Declarations Region
	19.5 Program Code Region
	19.6 Subroutines Region

	20 Program Information Object
	20.1 General Description
	20.2 Declaring proginfo
	20.3 Declaration Parameters

	21 Logic Script Resource Objects
	21.1 General Description
	21.2 Resource Object Types
	21.3 Usage Notes

	22 Register Input Resource Object
	22.1 General Description
	22.2 Required S3100 Device Configuration
	22.3 Declaring RegisterInputResource Objects
	22.4 Declaration Parameters
	22.5 Properties
	22.6 Methods
	22.7 Usage

	23 Digital Input Resource Object
	23.1 General Description
	23.2 Required S3100 Device Configuration
	23.3 Declaring DigitalInputResource Objects
	23.4 Declaration Parameters
	23.5 Properties
	23.6 Usage

	24 Analog PID Controller Resource Object
	24.1 General Description
	24.2 Required S3100 Device Configuration
	24.3 Declaring AnalogPIDControllerResource Objects
	24.4 Declaration Parameters
	24.5 Properties
	24.6 Methods
	24.7 Usage
	24.7.1 Simple PID
	24.7.2 Constraint Override PID

	25 Digital PID Controller Resource Object
	25.1 General Description
	25.2 Required S3100 Device Configuration
	25.3 Declaring DigitalPIDControllerResource Objects
	25.4 Declaration Parameters
	25.5 Properties
	25.6 Methods
	25.7 Usage
	25.7.1 Simple PID
	25.7.2 Constraint Override PID

	26 Digital Output Resource Object
	26.1 General Description
	26.2 Required S3100 Device Configuration
	26.3 Declaring DigitalOutputResource Objects
	26.4 Declaration Parameters
	26.5 Properties
	26.6 Methods
	26.7 Usage

	27 Alarm Resource Object
	27.1 General Description
	27.2 Required S3100 Device Configuration
	27.3 Declaring AlarmResource Objects
	27.4 Declaration Parameters
	27.5 Properties
	27.6 Methods
	27.7 Usage

	28 Timer Resource Object
	28.1 General Description
	28.2 Required S3100 Device Configuration
	28.3 Declaring TimerResource Objects
	28.4 Declaration Parameters
	28.5 Properties
	28.6 Methods
	28.7 Usage

	29 Logic Script Register Objects
	29.1 General Description
	29.2 Register Object Types

	30 Configuration Register Object
	30.1 General Description
	30.2 Declaring ConfigurationRegister Objects
	30.3 Declaration Parameters
	30.4 Properties
	30.5 Methods
	30.6 Usage

	31 Maintenance Register Object
	31.1 General Description
	31.2 Declaring MaintenanceRegister Objects
	31.3 Declaration Parameters
	31.4 Properties
	31.5 Methods
	31.6 Usage

	32 Holding Register Object
	32.1 General Description
	32.2 Declaring HoldingRegister Objects
	32.3 Declaration Parameters
	32.4 Properties
	32.5 Methods
	32.6 Usage

	33 Accumulation Register Object
	33.1 General Description
	33.2 Declaring AccumulationRegister Objects
	33.3 Declaration Parameters
	33.4 Properties
	33.5 Methods
	33.6 Usage

	34 Working Register Object
	34.1 General Description
	34.2 Declaring working registers
	34.3 Declaration Parameters
	34.4 Properties
	34.5 Methods
	34.6 Usage

	35 Task Object
	35.1 General Description
	35.2 Declaring Tasks
	35.3 Properties
	35.4 Methods
	35.5 Usage

	36 State Object
	36.1 General description
	36.2 Declaring States
	36.3 Properties
	36.4 Methods
	36.5 Modifiers
	36.6 Usage

	37 System State Objects
	38 Abort State Object
	38.1 General description
	38.2 Declaring abortState
	38.3 Entering abortState
	38.4 Usage

	39 Fail State Object
	39.1 General Description
	39.2 Declaring failState
	39.3 Entering failState
	39.4 Usage

	40 Subroutines
	40.1 General Description
	40.2 Declaring Subroutines
	40.3 Usage

	41 System Objects
	41.1 General Description
	41.2 System Object Types

	42 Real Time System Object
	42.1 General Description
	42.2 Properties
	42.3 Usage

	43 Flow Run System Object
	43.1 General Description
	43.2 Required S3100 Device Configuration
	43.3 Properties
	43.4 Methods
	43.5 Usage

	44 Flow Archive System Object
	44.1 General Description
	44.2 Required S3100 Device Configuration
	44.3 Methods
	44.4 Usage

	45 Triggered Archive System Object
	45.1 General Description
	45.2 Required S3100 Device Configuration
	45.3 Properties
	45.4 Methods
	45.5 Usage

	46 User Event Record System Object
	46.1 General Description
	46.2 Properties
	46.3 Methods
	46.4 Usage

	47 Printed Ticket System Object0F
	47.1 General Description
	47.2 Methods

	48 Display System Object
	48.1 General Description
	48.2 Required S3100 Device Configuration
	48.3 Properties
	48.4 Methods
	48.5 Usage

	49 Math Object
	49.1 General Description
	49.2 Math Constants
	49.3 Math Library Functions
	49.3.1 Math Trigonometric Functions

	50 User HMI Field Object
	50.1 General Description
	50.2 Declaring HmiFields Objects
	50.3 Declaration Parameters
	50.4 Properties
	50.5 Usage

	Part IV—Appendix A
	51 Scanner 3100 Unit Categories
	51.1 General Description
	51.2 Measurement Categories
	51.3 Unit Types
	51.3.1 None
	51.3.2 Volume
	51.3.3 Static Pressure (Absolute)
	51.3.4 Static Pressure (Gauge)
	51.3.5 fferential Pressure
	51.3.6 Temperature
	51.3.7 Mass
	51.3.8 Energy
	51.3.9 Voltage
	51.3.10 Molar Mass
	51.3.11 Length
	51.3.12 Frequency
	51.3.13 Resistance
	51.3.14 Current
	51.3.15 Time
	51.3.16 Percent
	51.3.17 Pulse
	51.3.18 Viscosity
	51.3.19 Mole
	51.3.20 Relative Density
	51.3.21 Fraction
	51.3.22 System Ticks
	51.3.23 Real Date
	51.3.24 Real Time
	51.3.25 Unity
	51.3.26 Power
	51.3.27 Charge

	51.4 Rate Scalar

